These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 35932756)

  • 1. Resonance Raman spectroscopy of pyranopterin molybdenum enzymes.
    Kirk ML; Lepluart J; Yang J
    J Inorg Biochem; 2022 Oct; 235():111907. PubMed ID: 35932756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational Probes of Molybdenum Cofactor-Protein Interactions in Xanthine Dehydrogenase.
    Dong C; Yang J; Reschke S; Leimkühler S; Kirk ML
    Inorg Chem; 2017 Jun; 56(12):6830-6837. PubMed ID: 28590138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and reversible pyran formation in molybdenum pyranopterin dithiolene models of the molybdenum cofactor.
    Williams BR; Fu Y; Yap GP; Burgmayer SJ
    J Am Chem Soc; 2012 Dec; 134(48):19584-7. PubMed ID: 23157708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancing Our Understanding of Pyranopterin-Dithiolene Contributions to Moco Enzyme Catalysis.
    Burgmayer SJN; Kirk ML
    Molecules; 2023 Nov; 28(22):. PubMed ID: 38005178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the origin of metal-sulfur vibrations in an oxo-molybdenum dithiolene complex: relevance to sulfite oxidase.
    Inscore FE; Knottenbelt SZ; Rubie ND; Joshi HK; Kirk ML; Enemark JH
    Inorg Chem; 2006 Feb; 45(3):967-76. PubMed ID: 16441102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of Pyran Cyclization and Pterin Conformation on Oxidized Forms of the Molybdenum Cofactor.
    Gisewhite DR; Yang J; Williams BR; Esmail A; Stein B; Kirk ML; Burgmayer SJN
    J Am Chem Soc; 2018 Oct; 140(40):12808-12818. PubMed ID: 30200760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyranopterin conformation defines the function of molybdenum and tungsten enzymes.
    Rothery RA; Stein B; Solomonson M; Kirk ML; Weiner JH
    Proc Natl Acad Sci U S A; 2012 Sep; 109(37):14773-8. PubMed ID: 22927383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyranopterin dithiolene distortions relevant to electron transfer in xanthine oxidase/dehydrogenase.
    Dong C; Yang J; Leimkühler S; Kirk ML
    Inorg Chem; 2014 Jul; 53(14):7077-9. PubMed ID: 24979205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Raman spectroscopic characterization of the molybdopterin active site of DMSO reductase.
    Kilpatrick L; Rajagopalan KV; Hilton J; Bastian NR; Stiefel EI; Pilato RS; Spiro TG
    Biochemistry; 1995 Mar; 34(9):3032-9. PubMed ID: 7893715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protonation and Non-Innocent Ligand Behavior in Pyranopterin Dithiolene Molybdenum Complexes.
    Gates C; Varnum H; Getty C; Loui N; Chen J; Kirk ML; Yang J; Nieter Burgmayer SJ
    Inorg Chem; 2022 Sep; 61(35):13728-13742. PubMed ID: 36000991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. {Moco}
    Enemark JH
    J Inorg Biochem; 2022 Jun; 231():111801. PubMed ID: 35339771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shifting the metallocentric molybdoenzyme paradigm: the importance of pyranopterin coordination.
    Rothery RA; Weiner JH
    J Biol Inorg Chem; 2015 Mar; 20(2):349-72. PubMed ID: 25267303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the active-site design of molybdenum oxo-transfer enzymes by quantum mechanical calculations.
    Li J; Ryde U
    Inorg Chem; 2014 Nov; 53(22):11913-24. PubMed ID: 25372012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance Raman studies of xanthine oxidase: The reduced enzyme-product complex with violapterin.
    Hemann C; Ilich P; Stockert AL; Choi EY; Hille R
    J Phys Chem B; 2005 Feb; 109(7):3023-31. PubMed ID: 16851316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of molybdenum(4+) quinoxalyldithiolenes as models for the noninnocent pyranopterin in the molybdenum cofactor.
    Matz KG; Mtei RP; Rothstein R; Kirk ML; Burgmayer SJ
    Inorg Chem; 2011 Oct; 50(20):9804-15. PubMed ID: 21894968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molybdenum-pterin complexes: a functional and structural model for the binding site in the enzyme dimethyl sulfoxide reductase.
    Fischer B; Schmalle H; Dubler E; Viscontini M
    Adv Exp Med Biol; 1993; 338():369-72. PubMed ID: 8304140
    [No Abstract]   [Full Text] [Related]  

  • 17. Reversible dissociation of thiolate ligands from molybdenum in an enzyme of the dimethyl sulfoxide reductase family.
    Bray RC; Adams B; Smith AT; Bennett B; Bailey S
    Biochemistry; 2000 Sep; 39(37):11258-69. PubMed ID: 10985771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox reactions of the pyranopterin system of the molybdenum cofactor.
    Nieter Burgmayer SJ; Pearsall DL; Blaney SM; Moore EM; Sauk-Schubert C
    J Biol Inorg Chem; 2004 Jan; 9(1):59-66. PubMed ID: 14628171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of YdhV as the First Molybdoenzyme Binding a Bis-Mo-MPT Cofactor in Escherichia coli.
    Reschke S; Duffus BR; Schrapers P; Mebs S; Teutloff C; Dau H; Haumann M; Leimkühler S
    Biochemistry; 2019 Apr; 58(17):2228-2242. PubMed ID: 30945846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reductive activation in periplasmic nitrate reductase involves chemical modifications of the Mo-cofactor beyond the first coordination sphere of the metal ion.
    Jacques JG; Fourmond V; Arnoux P; Sabaty M; Etienne E; Grosse S; Biaso F; Bertrand P; Pignol D; Léger C; Guigliarelli B; Burlat B
    Biochim Biophys Acta; 2014 Feb; 1837(2):277-86. PubMed ID: 24212053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.