These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 35932835)
1. Study on the optimal parameter range of droplet-wrapped respirable dust in spray dustfall by mesoscopic method. Nie W; Liu F; Xu C; Peng H; Zhang H; Mwabaima FI Environ Res; 2022 Nov; 214(Pt 2):114035. PubMed ID: 35932835 [TBL] [Abstract][Full Text] [Related]
2. Effect of spraying on coal dust diffusion in a coal mine based on a numerical simulation. Ma Q; Nie W; Yang S; Xu C; Peng H; Liu Z; Guo C; Cai X Environ Pollut; 2020 Sep; 264():114717. PubMed ID: 32417573 [TBL] [Abstract][Full Text] [Related]
3. Numerical simulation study on atomization rule and dust removal effect of surface-active dust suppressants. Xu C; Nie W; Peng H; Zhang S Environ Sci Pollut Res Int; 2023 May; 30(25):66730-66744. PubMed ID: 37186188 [TBL] [Abstract][Full Text] [Related]
4. Estimation of respirable dust exposure among coal miners in South Africa. Naidoo R; Seixas N; Robins T J Occup Environ Hyg; 2006 Jun; 3(6):293-300. PubMed ID: 16621766 [TBL] [Abstract][Full Text] [Related]
5. Spray dedusting scheme under hybrid ventilation at a fully mechanized excavation face. Yu H; Cheng W; Xie Y; Peng H Environ Sci Pollut Res Int; 2020 Mar; 27(8):7851-7871. PubMed ID: 31889270 [TBL] [Abstract][Full Text] [Related]
6. Coal mine dust lung disease in miners killed in the Upper Big Branch disaster: a review of lung pathology and contemporary respirable dust levels in underground US coal mines. Go LHT; Green FHY; Abraham JL; Churg A; Petsonk EL; Cohen RA Occup Environ Med; 2022 May; 79(5):319-325. PubMed ID: 34880046 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the CAS-POL and IOM samplers for determining the knockdown efficiencies of water sprays on float coal dust. Seaman CE; Shahan MR; Beck TW; Mischler SE J Occup Environ Hyg; 2018 Mar; 15(3):214-225. PubMed ID: 29200377 [TBL] [Abstract][Full Text] [Related]
8. Flow field characteristics and coal dust removal performance of an arc fan nozzle used for water spray. Han F; Liu J PLoS One; 2018; 13(9):e0203875. PubMed ID: 30235248 [TBL] [Abstract][Full Text] [Related]
9. Study on coal dust diffusion law and new pneumatic spiral spray dedusting technology at transfer point of mine cross roadway. Jing D; Liu H; Zhang T; Ge S; Ren S; Ma M PLoS One; 2022; 17(8):e0272304. PubMed ID: 35994466 [TBL] [Abstract][Full Text] [Related]
10. The risk of pulmonary tuberculosis in underground copper miners in Zambia exposed to respirable silica: a cross-sectional study. Ngosa K; Naidoo RN BMC Public Health; 2016 Aug; 16(1):855. PubMed ID: 27552992 [TBL] [Abstract][Full Text] [Related]
11. Development of a novel wind-assisted centralized spraying dedusting device for dust suppression in a fully mechanized mining face. Peng H; Nie W; Cai P; Liu Q; Liu Z; Yang S Environ Sci Pollut Res Int; 2019 Feb; 26(4):3292-3307. PubMed ID: 30267349 [TBL] [Abstract][Full Text] [Related]
12. Ventilatory function after exposure to various respirable hazards in a population of former coal miners. Calvert GM; Moore M; Hessl SM Br J Ind Med; 1991 Jan; 48(1):38-40. PubMed ID: 1993158 [TBL] [Abstract][Full Text] [Related]
13. Experimental study on effects of drilling parameters on respirable dust production during roof bolting operations. Jiang H; Luo Y; McQuerrey J J Occup Environ Hyg; 2018 Feb; 15(2):143-151. PubMed ID: 29157141 [TBL] [Abstract][Full Text] [Related]
14. [Dose-response relationship analysis between cumulative coal dust exposure and pneumoconiosis risk]. Zhang G; Wang XT Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2020 Jun; 38(6):433-437. PubMed ID: 32629573 [No Abstract] [Full Text] [Related]
15. Experimental characterization of multi-nozzle atomization interference for dust reduction between hydraulic supports at a fully mechanized coal mining face. Wang J; Zhou G; Wei X; Wang S Environ Sci Pollut Res Int; 2019 Apr; 26(10):10023-10036. PubMed ID: 30741384 [TBL] [Abstract][Full Text] [Related]
16. [Early change of pulmonary ventilation in new coal miners]. Peng KL; Wang ML; Du QG; Li YD; Attfield MD; Han GH; Petsonk EL; Li SK; Wu ZE Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2005 Apr; 23(2):105-8. PubMed ID: 16105450 [TBL] [Abstract][Full Text] [Related]
17. Differential respirable dust related lung function effects between current and former South African coal miners. Naidoo RN; Robins TG; Seixas N; Lalloo UG; Becklake M Int Arch Occup Environ Health; 2005 May; 78(4):293-302. PubMed ID: 15785947 [TBL] [Abstract][Full Text] [Related]
18. The derivation of estimated dust exposures for U.S. coal miners working before 1970. Attfield MD; Morring K Am Ind Hyg Assoc J; 1992 Apr; 53(4):248-55. PubMed ID: 1529917 [TBL] [Abstract][Full Text] [Related]
19. Exposure to Harmful Dusts on Fully Powered Longwall Coal Mines in Poland. Brodny J; Tutak M Int J Environ Res Public Health; 2018 Aug; 15(9):. PubMed ID: 30150562 [TBL] [Abstract][Full Text] [Related]
20. The mechanics of bolt drilling and theoretical analysis of drilling parameter effects on respirable dust generation. Jiang H; Luo Y; Yang J J Occup Environ Hyg; 2018 Sep; 15(9):700-713. PubMed ID: 30081754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]