BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 35932854)

  • 1. Thermophilic biological fluidized bed reactor in sludge line reduces greenhouse gas emissions in wastewater treatment system.
    Collivignarelli MC; Baldi M; Carnevale Miino M
    Sci Total Environ; 2022 Nov; 848():157794. PubMed ID: 35932854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive carbon footprint analysis of different wastewater treatment plant configurations.
    Wu Z; Duan H; Li K; Ye L
    Environ Res; 2022 Nov; 214(Pt 2):113818. PubMed ID: 35843274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sludge degradation, nutrient removal and reduction of greenhouse gas emission by a Chironomus-Azolla wastewater treatment cascade.
    Hendriks L; van der Meer TV; Kraak MHS; Verdonschot PFM; Smolders AJP; Lamers LPM; Veraart AJ
    PLoS One; 2024; 19(5):e0301459. PubMed ID: 38805505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. China's enhanced urban wastewater treatment increases greenhouse gas emissions and regional inequality.
    Huang Y; Meng F; Liu S; Sun S; Smith K
    Water Res; 2023 Feb; 230():119536. PubMed ID: 36608525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the greenhouse gas emissions from China's wastewater treatment plants: Based on life cycle assessment coupled with statistical data.
    Chen W; Zhang Q; Hu L; Geng Y; Liu C
    Ecotoxicol Environ Saf; 2023 Jul; 259():115007. PubMed ID: 37209571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematical analysis of sludge treatment and disposal technologies for carbon footprint reduction.
    Zhao Y; Yang Z; Niu J; Du Z; Federica C; Zhu Z; Yang K; Li Y; Zhao B; Pedersen TH; Liu C; Emmanuel M
    J Environ Sci (China); 2023 Jun; 128():224-249. PubMed ID: 36801037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Options to reduce greenhouse gas emissions during wastewater treatment for agricultural use.
    Fine P; Hadas E
    Sci Total Environ; 2012 Feb; 416():289-99. PubMed ID: 22209373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward better understanding and feasibility of controlling greenhouse gas emissions from treatment of industrial wastewater with activated sludge.
    Chen WH; Yang JH; Yuan CS; Yang YH
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20449-20461. PubMed ID: 27460025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle energy use and greenhouse gas emissions for a novel algal-osmosis membrane system versus conventional advanced potable water reuse processes: Part I.
    Lugo A; Bandara GLCL; Xu X; Penteado de Almeida J; Abeysiriwardana-Arachchige ISA; Nirmalakhandan N; Xu P
    J Environ Manage; 2023 Apr; 331():117293. PubMed ID: 36657205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China.
    Liu B; Wei Q; Zhang B; Bi J
    Sci Total Environ; 2013 Mar; 447():361-9. PubMed ID: 23410857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wastewater treatment process impact on energy savings and greenhouse gas emissions.
    Mamais D; Noutsopoulos C; Dimopoulou A; Stasinakis A; Lekkas TD
    Water Sci Technol; 2015; 71(2):303-8. PubMed ID: 25633956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of greenhouse gas emissions by the wastewater treatment plant of a locomotive repair factory in China.
    Wei Y; Yerushalmi L; Haghighat F
    Water Environ Res; 2008 Dec; 80(12):2253-60. PubMed ID: 19146103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evaluation of GHG emissions from Shanghai municipal wastewater treatment plants based on IPCC and operational data integrated methods (ODIM).
    Xi J; Gong H; Zhang Y; Dai X; Chen L
    Sci Total Environ; 2021 Nov; 797():148967. PubMed ID: 34298368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling greenhouse gas emissions from biological wastewater treatment by GPS-X: The full-scale case study of Corleone (Italy).
    Gulhan H; Cosenza A; Mannina G
    Sci Total Environ; 2023 Dec; 905():167327. PubMed ID: 37748617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life cycle assessment of greenhouse gas emissions of typical sewage sludge incineration treatment route based on two case studies in China.
    Yang H; Guo Y; Fang N; Dong B
    Environ Res; 2023 Aug; 231(Pt 1):115959. PubMed ID: 37105292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosolid stockpiles are a significant point source for greenhouse gas emissions.
    Majumder R; Livesley SJ; Gregory D; Arndt SK
    J Environ Manage; 2014 Oct; 143():34-43. PubMed ID: 24835360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of greenhouse gas emissions from aerobic and anaerobic wastewater treatment plants in Southeast of Italy.
    Ranieri E; D'Onghia G; Lopopolo L; Gikas P; Ranieri F; Gika E; Spagnolo V; Ranieri AC
    J Environ Manage; 2023 Jul; 337():117767. PubMed ID: 36965371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of Clean Water and Ammonia from Domestic Wastewater: Impacts on Embodied Energy and Greenhouse Gas Emissions.
    Shin C; Szczuka A; Liu MJ; Mendoza L; Jiang R; Tilmans SH; Tarpeh WA; Mitch WA; Criddle CS
    Environ Sci Technol; 2022 Jun; 56(12):8712-8721. PubMed ID: 35656915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A plant-wide modelling comparison between membrane bioreactors and conventional activated sludge.
    Mannina G; Cosenza A; Rebouças TF
    Bioresour Technol; 2020 Feb; 297():122401. PubMed ID: 31761624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.