These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35932919)

  • 41. Fabrication and Characterization of the Porous Ti
    Qi G; Wang X; Zhao J; Song C; Zhang Y; Ren F; Zhang N
    Front Chem; 2021; 9():833024. PubMed ID: 35237568
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Physico-chemical properties of the Ti
    Canillas M; Chinarro E; Carballo-Vila M; Jurado JR; Moreno B
    J Mater Chem B; 2013 Dec; 1(46):6459-6468. PubMed ID: 32261345
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Performance of three different anodes in electrochemical degradation of 4-para-nitrophenol.
    Murugaesan P; Aravind P; Muniyandi NG; Kandasamy S
    Environ Technol; 2015; 36(20):2618-27. PubMed ID: 25885262
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation of novel Ti-based MnO
    Xu X; Zhao J; Bai S; Mo R; Yang Y; Liu W; Tang X; Yu H; Zhu Y
    Water Sci Technol; 2019 Jul; 80(2):365-376. PubMed ID: 31537773
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photochemical Protection of Reactive Sites on Defective TiO
    Liu C; Zhang AY; Si Y; Pei DN; Yu HQ
    Environ Sci Technol; 2019 Jul; 53(13):7641-7652. PubMed ID: 31150211
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: a short review with emphasis to TiO2-WO3 photoanodes.
    Georgieva J; Valova E; Armyanov S; Philippidis N; Poulios I; Sotiropoulos S
    J Hazard Mater; 2012 Apr; 211-212():30-46. PubMed ID: 22172459
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient photocatalytic degradation of organics present in gas and liquid phases using Pt-TiO2/Zeolite (H-ZSM).
    Neppolian B; Mine S; Horiuchi Y; Bianchi CL; Matsuoka M; Dionysiou DD; Anpo M
    Chemosphere; 2016 Jun; 153():237-43. PubMed ID: 27016820
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid by metal-oxide-coated Ti electrodes.
    Maharana D; Xu Z; Niu J; Rao NN
    Chemosphere; 2015 Oct; 136():145-52. PubMed ID: 25981800
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrochemical degradation of amoxicillin in acidic aqueous medium using TiO
    Martínez JSB; González AS; López MC; Ayala FE; Mijangos JC; de Jesús Treviño Reséndez J; Vöng YM; Rocha JM; Bustos EB
    Environ Sci Pollut Res Int; 2022 Jun; 29(28):42130-42145. PubMed ID: 34255261
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review.
    Sirés I; Brillas E
    Environ Int; 2012 Apr; 40():212-229. PubMed ID: 21862133
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrical energy per order and current efficiency for electrochemical oxidation of p-chlorobenzoic acid with boron-doped diamond anode.
    Lanzarini-Lopes M; Garcia-Segura S; Hristovski K; Westerhoff P
    Chemosphere; 2017 Dec; 188():304-311. PubMed ID: 28888118
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ti
    Zou S; Berthelot R; Boury B; Mutin PH; Brun N
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32916888
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Combining Zirconia and Titanium Suboxides by Vat Photopolymerization.
    Schwarzer-Fischer E; Günther A; Roszeitis S; Moritz T
    Materials (Basel); 2021 May; 14(9):. PubMed ID: 34064507
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydrophobic networked PbO
    He Y; Wang X; Huang W; Chen R; Zhang W; Li H; Lin H
    Chemosphere; 2018 Feb; 193():89-99. PubMed ID: 29127839
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrodegradation of methylene blue dye in water and wastewater using lead oxide/titanium modified electrode.
    Abu Ghalwa NM; Zaggout FR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(10):2271-82. PubMed ID: 17018412
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Maximization of current efficiency for organic pollutants oxidation at BDD, Ti/SnO
    Xing X; Ni J; Zhu X; Jiang Y; Xia J
    Chemosphere; 2018 Aug; 205():361-368. PubMed ID: 29704843
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Magnéli Phase Titanium Oxide as a Novel Anode Material for Potassium-Ion Batteries.
    Lee GW; Park BH; Nazarian-Samani M; Kim YH; Roh KC; Kim KB
    ACS Omega; 2019 Mar; 4(3):5304-5309. PubMed ID: 31459701
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Insights into the degradation and detoxication mechanisms of aqueous capecitabine in electrochemical oxidation process.
    Xu L; Tang S; Wang K; Ma X; Niu J
    Chemosphere; 2020 Feb; 241():125058. PubMed ID: 31610461
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Critical review of perovskite-based materials in advanced oxidation system for wastewater treatment: Design, applications and mechanisms.
    Lin N; Gong Y; Wang R; Wang Y; Zhang X
    J Hazard Mater; 2022 Feb; 424(Pt C):127637. PubMed ID: 34753649
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of matrix on the electrochemical characteristics of TiO₂ nanotube array-based PbO₂ electrode for pollutant degradation.
    Hu Z; Zhou M; Zhou L; Li Y; Zhang C
    Environ Sci Pollut Res Int; 2014; 21(14):8476-84. PubMed ID: 24687791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.