These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3593319)

  • 21. Slow transitions between two conformational states of band 3 (AE1) modulate divalent anion transport and DBDS binding to a second site on band 3 which is activated by lowering the pH (pK approximately 5.0).
    Salhany JM
    Blood Cells Mol Dis; 2004; 32(3):372-8. PubMed ID: 15121094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anion manipulation, a novel antiarrhythmic approach: mechanism of action.
    Curtis MJ; Garlick PB; Ridley PD
    J Mol Cell Cardiol; 1993 Apr; 25(4):417-36. PubMed ID: 8393492
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Inhibition of anion transport in human erythrocyte ghosts under diverse experimental conditions].
    Scuteri A; Sarica C; Trischitta F; Romano L
    Boll Soc Ital Biol Sper; 1983 May; 59(5):608-13. PubMed ID: 6882558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for anionic cation transport of lithium, sodium and potassium across the human erythrocyte membrane induced by divalent anions.
    Becker BF; Duhm J
    J Physiol; 1978 Sep; 282():149-68. PubMed ID: 31458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The anion transport protein of the red cell membrane. A zipper mechanism of anion exchange.
    Wieth JO; Bjerrum PJ; Brahm J; Andersen OS
    Tokai J Exp Clin Med; 1982; 7 Suppl():91-101. PubMed ID: 7186223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of gossypol on erythrocyte membrane function: specific inhibition of inorganic anion exchange and interaction with band 3.
    Haspel HC; Corin RE; Sonenberg M
    J Pharmacol Exp Ther; 1985 Sep; 234(3):575-83. PubMed ID: 4032282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of inorganic and organic anions on the transport of phosphoenol-pyruvate across the erythrocyte membrane.
    Hamasaki N; Matsuyama H; Hirota-Chigita C; Nanri H
    Tokai J Exp Clin Med; 1982; 7 Suppl():113-9. PubMed ID: 7186217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast transmembrane exchange in red cells studied with NMR.
    Kuchel PW; Bulliman BT; Chapman BE; Kirk K; Potts JR
    Biomed Biochim Acta; 1987; 46(2-3):S55-9. PubMed ID: 3593318
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of anion equilibrium exchange by dansylation of the red blood cell membrane.
    Legrum B; Fasold H; Passow H
    Hoppe Seylers Z Physiol Chem; 1980 Oct; 361(10):1573-90. PubMed ID: 7450677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scalar couplings as pH probes in compartmentalized biological systems: 31P NMR of phosphite.
    Eykyn TR; Kuchel PW
    Magn Reson Med; 2003 Oct; 50(4):693-6. PubMed ID: 14523953
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mechanism of anion transport across human red blood cell membranes as revealed with a fluorescent substrate: II. Kinetic properties of NBD-taurine transfer in asymmetric conditions.
    Eidelman O; Cabantchik ZI
    J Membr Biol; 1983; 71(1-2):149-61. PubMed ID: 6834420
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A phosphate-analogue probe of red cell pH using phosphorus-31 nuclear magnetic resonance.
    Labotka RJ; Kleps RA
    Biochemistry; 1983 Dec; 22(26):6089-95. PubMed ID: 6661429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reconstitution of the erythrocyte anion transport system: recent progress.
    Scheuring U; Grieshaber G; Kollewe K; Kojro Z; Ruf H; Grell E; Haase W; Schubert D
    Biomed Biochim Acta; 1987; 46(2-3):S46-50. PubMed ID: 3593315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The kinetics of the titratable carrier for anion exchange in erythrocytes.
    Gunn RB; Fröhlich O
    Ann N Y Acad Sci; 1980; 341():384-93. PubMed ID: 6249152
    [No Abstract]   [Full Text] [Related]  

  • 35. Evidence that anion transport by band 3 proceeds via a ping-pong mechanism involving a single transport site. A 35 Cl NMR study.
    Falke JJ; Chan SI
    J Biol Chem; 1985 Aug; 260(17):9537-44. PubMed ID: 4019484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Urate transport in human red blood cells. Activation by ATP.
    Lucas-Heron B; Fontenaille C
    Biochim Biophys Acta; 1979 May; 553(2):284-94. PubMed ID: 36146
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hypophosphite transport in human erythrocytes studied by overdetermined one-dimensional NMR exchange analysis.
    Price WS; Kuchel PW
    NMR Biomed; 1990 Apr; 3(2):59-63. PubMed ID: 2390454
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Involvement of a histidine residue in inorganic phosphate and phosphoenolpyruvate transport across the human erythrocyte membrane.
    Matsuyama H; Kawano Y; Hamasaki N
    J Biochem; 1986 Feb; 99(2):495-501. PubMed ID: 3700362
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mechanism of anion transport across human red blood cell membranes as revealed with a fluorescent substrate: I. Kinetic properties of NBD-taurine transfer in symmetric conditions.
    Eidelman O; Cabantchik ZI
    J Membr Biol; 1983; 71(1-2):141-8. PubMed ID: 6834419
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional characterization of anion transport system isolated from human erythrocyte membranes.
    Wolosin JM; Ginsburg H; Cabantchik ZI
    J Biol Chem; 1977 Apr; 252(7):2419-27. PubMed ID: 14965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.