These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Numerically "exact" approach to open quantum dynamics: The hierarchical equations of motion (HEOM). Tanimura Y J Chem Phys; 2020 Jul; 153(2):020901. PubMed ID: 32668942 [TBL] [Abstract][Full Text] [Related]
6. A low-temperature quantum Fokker-Planck equation that improves the numerical stability of the hierarchical equations of motion for the Brownian oscillator spectral density. Li T; Yan Y; Shi Q J Chem Phys; 2022 Feb; 156(6):064107. PubMed ID: 35168335 [TBL] [Abstract][Full Text] [Related]
7. Bexcitonics: Quasiparticle approach to open quantum dynamics. Chen X; Franco I J Chem Phys; 2024 May; 160(20):. PubMed ID: 38814013 [TBL] [Abstract][Full Text] [Related]
8. On the exact truncation tier of fermionic hierarchical equations of motion. Han L; Zhang HD; Zheng X; Yan Y J Chem Phys; 2018 Jun; 148(23):234108. PubMed ID: 29935503 [TBL] [Abstract][Full Text] [Related]
9. Reduced quantum dynamics with arbitrary bath spectral densities: hierarchical equations of motion based on several different bath decomposition schemes. Liu H; Zhu L; Bai S; Shi Q J Chem Phys; 2014 Apr; 140(13):134106. PubMed ID: 24712779 [TBL] [Abstract][Full Text] [Related]
10. Removing instabilities in the hierarchical equations of motion: Exact and approximate projection approaches. Dunn IS; Tempelaar R; Reichman DR J Chem Phys; 2019 May; 150(18):184109. PubMed ID: 31091920 [TBL] [Abstract][Full Text] [Related]
11. Chebyshev hierarchical equations of motion for systems with arbitrary spectral densities and temperatures. Rahman H; Kleinekathöfer U J Chem Phys; 2019 Jun; 150(24):244104. PubMed ID: 31255062 [TBL] [Abstract][Full Text] [Related]
12. A hybrid stochastic hierarchy equations of motion approach to treat the low temperature dynamics of non-Markovian open quantum systems. Moix JM; Cao J J Chem Phys; 2013 Oct; 139(13):134106. PubMed ID: 24116551 [TBL] [Abstract][Full Text] [Related]
13. Perturbation expansions of stochastic wavefunctions for open quantum systems. Ke Y; Zhao Y J Chem Phys; 2017 Nov; 147(18):184103. PubMed ID: 29141416 [TBL] [Abstract][Full Text] [Related]
14. Quantum rate dynamics for proton transfer reactions in condensed phase: the exact hierarchical equations of motion approach. Chen L; Shi Q J Chem Phys; 2009 Apr; 130(13):134505. PubMed ID: 19355749 [TBL] [Abstract][Full Text] [Related]
15. Generalized master equation for charge transport in a molecular junction: Exact memory kernels and their high order expansion. Dan X; Xu M; Yan Y; Shi Q J Chem Phys; 2022 Apr; 156(13):134114. PubMed ID: 35395901 [TBL] [Abstract][Full Text] [Related]
16. Nonequilibrium quantum dynamics in the condensed phase via the generalized quantum master equation. Zhang ML; Ka BJ; Geva E J Chem Phys; 2006 Jul; 125(4):44106. PubMed ID: 16942133 [TBL] [Abstract][Full Text] [Related]
17. A time domain two-particle approximation to calculate the absorption and circular dichroism line shapes of molecular aggregates. Song K; Bai S; Shi Q J Chem Phys; 2015 Aug; 143(6):064109. PubMed ID: 26277129 [TBL] [Abstract][Full Text] [Related]
18. Equilibrium excited state and emission spectra of molecular aggregates from the hierarchical equations of motion approach. Jing Y; Chen L; Bai S; Shi Q J Chem Phys; 2013 Jan; 138(4):045101. PubMed ID: 23387623 [TBL] [Abstract][Full Text] [Related]
19. Extended hierarchy equation of motion for the spin-boson model. Tang Z; Ouyang X; Gong Z; Wang H; Wu J J Chem Phys; 2015 Dec; 143(22):224112. PubMed ID: 26671363 [TBL] [Abstract][Full Text] [Related]
20. Holstein polaron transport from numerically "exact" real-time quantum dynamics simulations. Janković V J Chem Phys; 2023 Sep; 159(9):. PubMed ID: 37671965 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]