BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 35933217)

  • 1. Optical trapping and manipulation for single-particle spectroscopy and microscopy.
    Chen Z; Cai Z; Liu W; Yan Z
    J Chem Phys; 2022 Aug; 157(5):050901. PubMed ID: 35933217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Manipulation and Spectroscopy Of Silicon Nanoparticles Exhibiting Dielectric Resonances.
    Andres-Arroyo A; Gupta B; Wang F; Gooding JJ; Reece PJ
    Nano Lett; 2016 Mar; 16(3):1903-10. PubMed ID: 26848883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optothermal Manipulations of Colloidal Particles and Living Cells.
    Lin L; Hill EH; Peng X; Zheng Y
    Acc Chem Res; 2018 Jun; 51(6):1465-1474. PubMed ID: 29799720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Manipulation of Lanthanide-Doped Nanoparticles: How to Overcome Their Limitations.
    Ortiz-Rivero E; Labrador-Páez L; Rodríguez-Sevilla P; Haro-González P
    Front Chem; 2020; 8():593398. PubMed ID: 33240853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile Quadruple-Trap Optical Tweezers for Dual DNA Experiments.
    Heller I; Laurens N; Vorselen D; Broekmans OD; Biebricher AS; King GA; Brouwer I; Wuite GJL; Peterman EJG
    Methods Mol Biol; 2017; 1486():257-272. PubMed ID: 27844431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional optical trapping and orientation of microparticles for coherent X-ray diffraction imaging.
    Gao Y; Harder R; Southworth SH; Guest JR; Huang X; Yan Z; Ocola LE; Yifat Y; Sule N; Ho PJ; Pelton M; Scherer NF; Young L
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4018-4024. PubMed ID: 30765527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles.
    Redding B; Schwab M; Pan YL
    Sensors (Basel); 2015 Aug; 15(8):19021-46. PubMed ID: 26247952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-Molecular Applications of Recent Developments in Optical Tweezers.
    Choudhary D; Mossa A; Jadhav M; Cecconi C
    Biomolecules; 2019 Jan; 9(1):. PubMed ID: 30641944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy.
    Hashemi Shabestari M; Meijering AEC; Roos WH; Wuite GJL; Peterman EJG
    Methods Enzymol; 2017; 582():85-119. PubMed ID: 28062046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axial optical trapping forces on two particles trapped simultaneously by optical tweezers.
    Xu S; Li Y; Lou L
    Appl Opt; 2005 May; 44(13):2667-72. PubMed ID: 15881076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trapping and two-photon fluorescence excitation of microscopic objects using ultrafast single-fiber optical tweezers.
    Mishra YN; Ingle N; Mohanty SK
    J Biomed Opt; 2011 Oct; 16(10):105003. PubMed ID: 22029347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanophotonic Platforms for Chiral Sensing and Separation.
    Solomon ML; Saleh AAE; Poulikakos LV; Abendroth JM; Tadesse LF; Dionne JA
    Acc Chem Res; 2020 Mar; 53(3):588-598. PubMed ID: 31913015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining the 3D orientation of optically trapped upconverting nanorods by in situ single-particle polarized spectroscopy.
    Rodríguez-Sevilla P; Labrador-Páez L; Wawrzyńczyk D; Nyk M; Samoć M; Kar AK; Mackenzie MD; Paterson L; Jaque D; Haro-González P
    Nanoscale; 2016 Jan; 8(1):300-8. PubMed ID: 26607763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the micro-rheological properties of aerosol particles using optical tweezers.
    Power RM; Reid JP
    Rep Prog Phys; 2014 Jul; 77(7):074601. PubMed ID: 24994710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential energy profile of colloidal nanoparticles in optical confinement.
    Fu J; Zhan Q; Lim MY; Li Z; Ou-Yang HD
    Opt Lett; 2013 Oct; 38(20):3995-8. PubMed ID: 24321903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introduction to Optical Tweezers: Background, System Designs, and Applications.
    Malinowska AM; van Mameren J; Peterman EJG; Wuite GJL; Heller I
    Methods Mol Biol; 2024; 2694():3-28. PubMed ID: 37823997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-Optical Tweezers: Methods and Applications for Trapping Single Molecules and Nanoparticles.
    Kolbow JD; Lindquist NC; Ertsgaard CT; Yoo D; Oh SH
    Chemphyschem; 2021 Jul; 22(14):1409-1420. PubMed ID: 33797179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.