These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 35933217)

  • 61. Indirect optical trapping using light driven micro-rotors for reconfigurable hydrodynamic manipulation.
    Būtaitė UG; Gibson GM; Ho YD; Taverne M; Taylor JM; Phillips DB
    Nat Commun; 2019 Mar; 10(1):1215. PubMed ID: 30872572
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Rapid 3D fluorescence imaging of individual optically trapped living immune cells.
    Wolfson D; Steck M; Persson M; McNerney G; Popovich A; Goksör M; Huser T
    J Biophotonics; 2015 Mar; 8(3):208-16. PubMed ID: 24420444
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Single-molecule force spectroscopy using the NanoTracker optical tweezers platform: from design to application.
    Wozniak A; van Mameren J; Ragona S
    Curr Pharm Biotechnol; 2009 Aug; 10(5):467-73. PubMed ID: 19689314
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Single-Molecule Angular Optical Trapping for Studying Transcription Under Torsion.
    Ma J; Tan C; Wang MD
    Methods Mol Biol; 2018; 1805():301-332. PubMed ID: 29971725
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Real-time 3D particle manipulation visualized using volume holographic gratings.
    Chen Z; Chen W; Lu HY; Chevallier Y; Chen N; Barbastathis G; Luo Y
    Opt Lett; 2014 May; 39(10):3078-81. PubMed ID: 24978278
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Thermal tweezers for nano-manipulation and trapping of interacting atoms or nanoparticles on crystalline surfaces.
    Mason DR; Gramotnev DK; Gramotnev G
    J Chem Phys; 2012 Sep; 137(11):114701. PubMed ID: 22998275
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing.
    Liu Y; Yu M
    Opt Express; 2009 Aug; 17(16):13624-38. PubMed ID: 19654770
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dark-field optical tweezers for nanometrology of metallic nanoparticles.
    Pearce K; Wang F; Reece PJ
    Opt Express; 2011 Dec; 19(25):25559-69. PubMed ID: 22273949
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Optical manipulation: advances for biophotonics in the 21st century.
    Corsetti S; Dholakia K
    J Biomed Opt; 2021 Jul; 26(7):. PubMed ID: 34235899
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Line optical tweezers as controllable micromachines: techniques and emerging trends.
    Shen Y; Weitz DA; Forde NR; Shayegan M
    Soft Matter; 2022 Jul; 18(29):5359-5365. PubMed ID: 35819100
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Simultaneous Force and Darkfield Measurements Reveal Solvent-Dependent Axial Control of Optically Trapped Gold Nanoparticles.
    Jackson DJ; Dawes BA; Kamenetska M
    J Phys Chem Lett; 2023 Mar; 14(11):2830-2836. PubMed ID: 36912824
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Metasurface supporting quasi-BIC for optical trapping and Raman-spectroscopy of biological nanoparticles.
    Hasan MR; Hellesø OG
    Opt Express; 2023 Feb; 31(4):6782-6795. PubMed ID: 36823928
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Synthesis of Germanium Nanospheres as High-Precision Optical Tweezers Probes.
    Sudhakar S; Rajendran P; Schäffer E
    Methods Mol Biol; 2022; 2478():25-35. PubMed ID: 36063317
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Opto-Thermophoretic Attraction, Trapping, and Dynamic Manipulation of Lipid Vesicles.
    Hill EH; Li J; Lin L; Liu Y; Zheng Y
    Langmuir; 2018 Nov; 34(44):13252-13262. PubMed ID: 30350700
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Temperature Quantification and Temperature Control in Optical Tweezers.
    Geldhof JJ; Malinowska AM; Wuite GJL; Peterman EJG; Heller I
    Methods Mol Biol; 2022; 2478():123-140. PubMed ID: 36063321
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Optical trapping of nanoparticles by ultrashort laser pulses.
    Usman A; Chiang WY; Masuhara H
    Sci Prog; 2013; 96(Pt 1):1-18. PubMed ID: 23738434
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Single-cell infrared vibrational analysis by optical trapping mid-infrared photothermal microscopy.
    Kato R; Yano TA; Tanaka T
    Analyst; 2023 Mar; 148(6):1285-1290. PubMed ID: 36811918
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Multimodal Optothermal Manipulations along Various Surfaces.
    Ding H; Kollipara PS; Yao K; Chang Y; Dickinson DJ; Zheng Y
    ACS Nano; 2023 May; 17(10):9280-9289. PubMed ID: 37017427
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nanojet Trapping of a Single Sub-10 nm Upconverting Nanoparticle in the Full Liquid Water Temperature Range.
    Lu D; Pedroni M; Labrador-Páez L; Marqués MI; Jaque D; Haro-González P
    Small; 2021 Feb; 17(7):e2006764. PubMed ID: 33502123
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects.
    Gao D; Ding W; Nieto-Vesperinas M; Ding X; Rahman M; Zhang T; Lim C; Qiu CW
    Light Sci Appl; 2017 Sep; 6(9):e17039. PubMed ID: 30167291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.