These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 3593323)

  • 1. Factors controlling phosphate-calcium-induced fusion for erythrocytes of several species.
    Baker RF; Clark LJ; Farooqui S; Kalra VK
    Biomed Biochim Acta; 1987; 46(2-3):S98-102. PubMed ID: 3593323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of cell shape, membrane deformability and phospholipid organization on phosphate-calcium-induced fusion of erythrocytes.
    Farooqui SM; Wali RK; Baker RF; Kalra VK
    Biochim Biophys Acta; 1987 Nov; 904(2):239-50. PubMed ID: 3663671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic behaviour of amphiphilic lipids to penetrate into membrane of intact human erythrocytes and to induce change in the cell shape.
    Fujii T; Tamura A
    Biomed Biochim Acta; 1983; 42(11-12):S81-5. PubMed ID: 6675720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The calcium-phosphate-induced fusion of human erythrocytes.
    Sheremetyev YuA ; Fomin IL; Suslov FYu ; Sheremetyeva AV; Orlov BN
    Membr Cell Biol; 2000; 14(2):299-303. PubMed ID: 11093590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of intracellular ATP on La(3+)-induced aggregation and fusion of human erythrocytes].
    Sheremet'ev IuA; Sheremet'eva AV
    Biofizika; 2002; 47(2):300-3. PubMed ID: 11969167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of phospholipid asymmetry in calcium-phosphate-induced fusion of human erythrocytes.
    Schewe M; Müller P; Korte T; Herrmann A
    J Biol Chem; 1992 Mar; 267(9):5910-5. PubMed ID: 1556105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased adherence of oxidant-treated human and bovine erythrocytes to cultured endothelial cells.
    Wali RK; Jaffe S; Kumar D; Sorgente N; Kalra VK
    J Cell Physiol; 1987 Oct; 133(1):25-36. PubMed ID: 3667707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some morphological consequences of uncoupling the lipid bilayer from the plasma membrane skeleton in intact erythrocytes.
    Allan D; Raval P
    Biomed Biochim Acta; 1983; 42(11-12):S11-6. PubMed ID: 6675679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium induces phospholipid redistribution and microvesicle release in human erythrocyte membranes by independent pathways.
    Bucki R; Bachelot-Loza C; Zachowski A; Giraud F; Sulpice JC
    Biochemistry; 1998 Nov; 37(44):15383-91. PubMed ID: 9799499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on membrane fluidity and erythrocyte aggregation in equine, bovine and human species.
    Spengler MI; Bertoluzzo SM; Catalani G; Rasia ML
    Clin Hemorheol Microcirc; 2008; 38(3):171-6. PubMed ID: 18239259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the differential morphological alterations in human and goat erythrocytes against ATP depletion and Ca(2+)-induced stresses.
    Zaidi A; Khan MT; Mirza M; Ahmad I; Saleemuddin M
    Biochem Mol Biol Int; 1995 Oct; 37(3):517-26. PubMed ID: 8595392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormality of phospholipid transverse diffusion in sickle erythrocytes.
    Zachowski A; Craescu CT; Galacteros F; Devaux PF
    J Clin Invest; 1985 May; 75(5):1713-7. PubMed ID: 3998152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermembrane lipid transfer during Trypanosoma cruzi-induced erythrocyte membrane destabilization.
    Luján HD; Bronia DH
    Parasitology; 1994 Apr; 108 ( Pt 3)():323-34. PubMed ID: 8022658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Factors of avian erythrocyte fusion: changes in the state of plasma membrane induced by dimethylsulfoxide and temperature].
    Boiko NM; Bondarenko VA; Belous AM
    Biokhimiia; 1982 Jun; 47(6):896-903. PubMed ID: 7115803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lack of some Ca2+-mediated processes in goat erythrocytes.
    Khan MT; Saleemuddin M
    Biochim Biophys Acta; 1988 May; 940(1):165-9. PubMed ID: 3130104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape change of human erythrocytes induced by phosphatidylcholine and lysophosphatidylcholine species with various acyl chain lengths.
    Fujii T; Tamura A
    Cell Biochem Funct; 1984 Jul; 2(3):171-6. PubMed ID: 6478541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of rimantadine on the structure of model and biological membranes.
    Cherny VV; Paulitschke M; Simonova MV; Hessel E; Ermakov YuA ; Sokolov VS; Lerche D; Markin VS
    Gen Physiol Biophys; 1989 Feb; 8(1):23-37. PubMed ID: 2737460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of the selective toxicity of amphotericin B incorporated into liposomes.
    Juliano RL; Grant CW; Barber KR; Kalp MA
    Mol Pharmacol; 1987 Jan; 31(1):1-11. PubMed ID: 3807887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular sugars improve survival of human red blood cells cryopreserved at -80 degrees C in the presence of polyvinyl pyrrolidone and human serum albumin.
    Quan G; Zhang L; Guo Y; Liu M; Wang J; Wang Y; Dong B; Liu A; Zhang J; Han Y
    Cryo Letters; 2007; 28(2):95-108. PubMed ID: 17522728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+ sensitivity of phospholipid scrambling in human red cell ghosts.
    Woon LA; Holland JW; Kable EP; Roufogalis BD
    Cell Calcium; 1999 Apr; 25(4):313-20. PubMed ID: 10456228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.