These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 3593323)

  • 21. Membrane lipid components associated with increased filterability of erythrocytes from long-distance runners.
    Nakano T; Wada Y; Matsumura S
    Clin Hemorheol Microcirc; 2001; 24(2):85-92. PubMed ID: 11381183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Membrane stabilizing effect of lysolecithin in calf red blood cells.
    Imre S; Horváth Z; Szilágyi T
    Acta Physiol Acad Sci Hung; 1980; 55(2):113-20. PubMed ID: 7435204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Membrane ultrastructural changes during calcium phosphate-induced fusion of human erythrocyte ghosts.
    Zakai N; Kulka RG; Loyter A
    Proc Natl Acad Sci U S A; 1977 Jun; 74(6):2417-21. PubMed ID: 329283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Decreased deformability of the X-ray-irradiated red blood cells stored in mannitol-adenine-phosphate medium.
    Suzuki Y; Tateishi N; Cicha I; Shiba M; Muraoka M; Tadokoro K; Maeda N
    Clin Hemorheol Microcirc; 2000; 22(2):131-41. PubMed ID: 10831063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fusion of human erythrocyte ghosts promoted by the combined action of calcium and phosphate ions.
    Zakai N; Kulka RG; Loyter A
    Nature; 1976 Oct; 263(5579):696-9. PubMed ID: 10529
    [No Abstract]   [Full Text] [Related]  

  • 26. Membrane phospholipid abnormalities in pathologic erythrocytes: a model for cell aging.
    Wagner G; Chiu DT; Schwartz RS; Lubin B
    Prog Clin Biol Res; 1985; 195():237-50. PubMed ID: 4059270
    [No Abstract]   [Full Text] [Related]  

  • 27. Effect of transbilayer phospholipid distribution on erythrocyte fusion.
    Tullius EK; Williamson P; Schlegel RA
    Biosci Rep; 1989 Oct; 9(5):623-33. PubMed ID: 2804262
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphate-calcium induced fusion of chicken erythrocytes.
    Majumdar S; Baker RF
    Exp Cell Res; 1980 Mar; 126(1):175-82. PubMed ID: 7358089
    [No Abstract]   [Full Text] [Related]  

  • 29. Bovine post-parturient haemoglobinuria: effect of inorganic phosphate on red cell metabolism.
    Wang XL; Gallagher CH; McClure TJ; Reeve VE; Canfield PJ
    Res Vet Sci; 1985 Nov; 39(3):333-9. PubMed ID: 4081339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Erythrocyte phospholipid organization and vesiculation in hereditary high red cell membrane phosphatidylcholine hemolytic anemia.
    Butikofer P; Kuypers FA; Lane P; Chiu DT; Lubin BH; Ott P
    J Lab Clin Med; 1989 Mar; 113(3):278-84. PubMed ID: 2926237
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and dynamic aspects of red cell phospholipids; featuring phosphatidylcholine.
    Roelofsen B; Op Den Kamp JA; Van Deenen LL
    Biomed Biochim Acta; 1987; 46(2-3):S10-5. PubMed ID: 3593289
    [No Abstract]   [Full Text] [Related]  

  • 32. Fusion of erythrocyte ghosts induced by calcium phosphate. Kinetic characteristics and the role of Ca2+, phosphate and calcium-phosphate complexes.
    Hoekstra D; Wilschut J; Scherphof G
    Eur J Biochem; 1985 Jan; 146(1):131-40. PubMed ID: 3967650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron microscopic study of the calcium phosphate-induced aggregation and membrane destabilization of cytoskeleton-free erythrocyte vesicles.
    Fassel TA; Hui SW; Leonards K; Ohki S
    Biochim Biophys Acta; 1988 Aug; 943(2):267-76. PubMed ID: 3401481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of inorganic phosphate and Ca2+ and Mg2+ on the in vitro lysis of bovine erythrocytes.
    Sellei J
    Res Vet Sci; 1989 May; 46(3):297-300. PubMed ID: 2740624
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The osmotically-induced fusion of erythrocytes is associated with a change in phospholipid asymmetry.
    Baldwin JM; O'Reilly R; Whitney M; Lucy JA
    Biochem Soc Trans; 1990 Oct; 18(5):941. PubMed ID: 2083751
    [No Abstract]   [Full Text] [Related]  

  • 36. Role of Ca++ in virus-induced membrane fusion. Ca++ accumulation and ultrastructural changes induced by Sendai virus in chicken erythrocytes.
    Volsky DJ; Loyter A
    J Cell Biol; 1978 Aug; 78(2):465-79. PubMed ID: 211140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy requirements of erythrocytes under mechanical stress.
    Kodícek M; Mircevová L; Marík T
    Biomed Biochim Acta; 1987; 46(2-3):S103-7. PubMed ID: 3593290
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A possible role of cholesterol in membrane adhesion.
    Ohki S; Leonards KS
    Biochemistry; 1984 Nov; 23(23):5578-81. PubMed ID: 6509036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transmembrane phospholipid motions induced by F glycoprotein in hemagglutinating virus of Japan.
    Maeda T; Asano A; Okada Y; Ohnishi SI
    J Virol; 1977 Jan; 21(1):232-41. PubMed ID: 189066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Survival of rabbit and horse erythrocytes in vivo after changing the fatty acyl composition of their phosphatidylcholine.
    Kuypers FA; Easton EW; van den Hoven R; Wensing T; Roelofsen B; op den Kamp JA; van Deenen LL
    Biochim Biophys Acta; 1985 Oct; 819(2):170-8. PubMed ID: 4041456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.