BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35933325)

  • 1. ELIMINATOR: essentiality analysis using multisystem networks and integer programming.
    Antoranz A; Ortiz M; Pey J
    BMC Bioinformatics; 2022 Aug; 23(1):324. PubMed ID: 35933325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovering false negatives in CRISPR fitness screens with JLOE.
    Dede M; Hart T
    Nucleic Acids Res; 2023 Feb; 51(4):1637-1651. PubMed ID: 36727483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of essential genes in the human genome.
    Wang T; Birsoy K; Hughes NW; Krupczak KM; Post Y; Wei JJ; Lander ES; Sabatini DM
    Science; 2015 Nov; 350(6264):1096-101. PubMed ID: 26472758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OGEE v3: Online GEne Essentiality database with increased coverage of organisms and human cell lines.
    Gurumayum S; Jiang P; Hao X; Campos TL; Young ND; Korhonen PK; Gasser RB; Bork P; Zhao XM; He LJ; Chen WH
    Nucleic Acids Res; 2021 Jan; 49(D1):D998-D1003. PubMed ID: 33084874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reframing gene essentiality in terms of adaptive flexibility.
    Guzmán GI; Olson CA; Hefner Y; Phaneuf PV; Catoiu E; Crepaldi LB; Micas LG; Palsson BO; Feist AM
    BMC Syst Biol; 2018 Dec; 12(1):143. PubMed ID: 30558585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring cancer dependencies on metabolic genes from large-scale genetic screens.
    Lagziel S; Lee WD; Shlomi T
    BMC Biol; 2019 Apr; 17(1):37. PubMed ID: 31039782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of FBA Based Gene Essentiality Analysis in Cancer with a Fast Context-Specific Network Reconstruction Method.
    Tobalina L; Pey J; Rezola A; Planes FJ
    PLoS One; 2016; 11(5):e0154583. PubMed ID: 27145226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting gene knockout effects from expression data.
    Rosenski J; Shifman S; Kaplan T
    BMC Med Genomics; 2023 Feb; 16(1):26. PubMed ID: 36803845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CEN-tools: an integrative platform to identify the contexts of essential genes.
    Sharma S; Dincer C; Weidemüller P; Wright GJ; Petsalaki E
    Mol Syst Biol; 2020 Oct; 16(10):e9698. PubMed ID: 33073517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsupervised correction of gene-independent cell responses to CRISPR-Cas9 targeting.
    Iorio F; Behan FM; Gonçalves E; Bhosle SG; Chen E; Shepherd R; Beaver C; Ansari R; Pooley R; Wilkinson P; Harper S; Butler AP; Stronach EA; Saez-Rodriguez J; Yusa K; Garnett MJ
    BMC Genomics; 2018 Aug; 19(1):604. PubMed ID: 30103702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OGEE v2: an update of the online gene essentiality database with special focus on differentially essential genes in human cancer cell lines.
    Chen WH; Lu G; Chen X; Zhao XM; Bork P
    Nucleic Acids Res; 2017 Jan; 45(D1):D940-D944. PubMed ID: 27799467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras.
    Wang T; Yu H; Hughes NW; Liu B; Kendirli A; Klein K; Chen WW; Lander ES; Sabatini DM
    Cell; 2017 Feb; 168(5):890-903.e15. PubMed ID: 28162770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Evaluation of Machine Learning Approaches for the Prediction of Essential Genes in Eukaryotes Using Protein Sequence-Derived Features.
    Campos TL; Korhonen PK; Gasser RB; Young ND
    Comput Struct Biotechnol J; 2019; 17():785-796. PubMed ID: 31312416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paralog buffering contributes to the variable essentiality of genes in cancer cell lines.
    De Kegel B; Ryan CJ
    PLoS Genet; 2019 Oct; 15(10):e1008466. PubMed ID: 31652272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A High-Resolution Genome-Wide CRISPR/Cas9 Viability Screen Reveals Structural Features and Contextual Diversity of the Human Cell-Essential Proteome.
    Bertomeu T; Coulombe-Huntington J; Chatr-Aryamontri A; Bourdages KG; Coyaud E; Raught B; Xia Y; Tyers M
    Mol Cell Biol; 2018 Jan; 38(1):. PubMed ID: 29038160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning approach to gene essentiality prediction: a review.
    Aromolaran O; Aromolaran D; Isewon I; Oyelade J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33842944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ACE: a probabilistic model for characterizing gene-level essentiality in CRISPR screens.
    Hutton ER; Vakoc CR; Siepel A
    Genome Biol; 2021 Sep; 22(1):278. PubMed ID: 34556174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction of copy number induced false positives in CRISPR screens.
    de Weck A; Golji J; Jones MD; Korn JM; Billy E; McDonald ER; Schmelzle T; Bitter H; Kauffmann A
    PLoS Comput Biol; 2018 Jul; 14(7):e1006279. PubMed ID: 30024886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined gene essentiality scoring improves the prediction of cancer dependency maps.
    Wang W; Malyutina A; Pessia A; Saarela J; Heckman CA; Tang J
    EBioMedicine; 2019 Dec; 50():67-80. PubMed ID: 31732481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics.
    Hart T; Brown KR; Sircoulomb F; Rottapel R; Moffat J
    Mol Syst Biol; 2014 Jul; 10(7):733. PubMed ID: 24987113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.