These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35933384)

  • 1. Effects of sample preservation methods and duration of storage on the performance of mid-infrared spectroscopy for predicting the age of malaria vectors.
    Mgaya JN; Siria DJ; Makala FE; Mgando JP; Vianney JM; Mwanga EP; Okumu FO
    Parasit Vectors; 2022 Aug; 15(1):281. PubMed ID: 35933384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using mid-infrared spectroscopy and supervised machine-learning to identify vertebrate blood meals in the malaria vector, Anopheles arabiensis.
    Mwanga EP; Mapua SA; Siria DJ; Ngowo HS; Nangacha F; Mgando J; Baldini F; González Jiménez M; Ferguson HM; Wynne K; Selvaraj P; Babayan SA; Okumu FO
    Malar J; 2019 May; 18(1):187. PubMed ID: 31146762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using transfer learning and dimensionality reduction techniques to improve generalisability of machine-learning predictions of mosquito ages from mid-infrared spectra.
    Mwanga EP; Siria DJ; Mitton J; Mshani IH; González-Jiménez M; Selvaraj P; Wynne K; Baldini F; Okumu FO; Babayan SA
    BMC Bioinformatics; 2023 Jan; 24(1):11. PubMed ID: 36624386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adapting field-mosquito collection techniques in a perspective of near-infrared spectroscopy implementation.
    Somé BM; Da DF; McCabe R; Djègbè NDC; Paré LIG; Wermé K; Mouline K; Lefèvre T; Ouédraogo AG; Churcher TS; Dabiré RK
    Parasit Vectors; 2022 Sep; 15(1):338. PubMed ID: 36163071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid classification of epidemiologically relevant age categories of the malaria vector, Anopheles funestus.
    Mwanga EP; Siria DJ; Mshani IH; Mwinyi SH; Abbasi S; Jimenez MG; Wynne K; Baldini F; Babayan SA; Okumu FO
    Parasit Vectors; 2024 Mar; 17(1):143. PubMed ID: 38500231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating RNAlater® as a preservative for using near-infrared spectroscopy to predict Anopheles gambiae age and species.
    Sikulu M; Dowell KM; Hugo LE; Wirtz RA; Michel K; Peiris KH; Moore S; Killeen GF; Dowell FE
    Malar J; 2011 Jul; 10():186. PubMed ID: 21740582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of mosquito species and population age structure using mid-infrared spectroscopy and supervised machine learning.
    González Jiménez M; Babayan SA; Khazaeli P; Doyle M; Walton F; Reedy E; Glew T; Viana M; Ranford-Cartwright L; Niang A; Siria DJ; Okumu FO; Diabaté A; Ferguson HM; Baldini F; Wynne K
    Wellcome Open Res; 2019; 4():76. PubMed ID: 31544155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of near infrared spectra for age-grading of wild populations of Anopheles gambiae.
    Krajacich BJ; Meyers JI; Alout H; Dabiré RK; Dowell FE; Foy BD
    Parasit Vectors; 2017 Nov; 10(1):552. PubMed ID: 29116006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age grading An. gambiae and An. arabiensis using near infrared spectra and artificial neural networks.
    Milali MP; Sikulu-Lord MT; Kiware SS; Dowell FE; Corliss GF; Povinelli RJ
    PLoS One; 2019; 14(8):e0209451. PubMed ID: 31412028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating preservation methods for identifying Anopheles gambiae s.s. and Anopheles arabiensis complex mosquitoes species using near infra-red spectroscopy.
    Mayagaya VS; Ntamatungiro AJ; Moore SJ; Wirtz RA; Dowell FE; Maia MF
    Parasit Vectors; 2015 Jan; 8():60. PubMed ID: 25623484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Plasmodium berghei infected Anopheles stephensi using near-infrared spectroscopy.
    Esperança PM; Blagborough AM; Da DF; Dowell FE; Churcher TS
    Parasit Vectors; 2018 Jun; 11(1):377. PubMed ID: 29954424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid assessment of the blood-feeding histories of wild-caught malaria mosquitoes using mid-infrared spectroscopy and machine learning.
    Mwanga EP; Mchola IS; Makala FE; Mshani IH; Siria DJ; Mwinyi SH; Abbasi S; Seleman G; Mgaya JN; Jiménez MG; Wynne K; Sikulu-Lord MT; Selvaraj P; Okumu FO; Baldini F; Babayan SA
    Malar J; 2024 Mar; 23(1):86. PubMed ID: 38532415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reagent-free detection of Plasmodium falciparum malaria infections in field-collected mosquitoes using mid-infrared spectroscopy and machine learning.
    Mwanga EP; Kweyamba PA; Siria DJ; Mshani IH; Mchola IS; Makala FE; Seleman G; Abbasi S; Mwinyi SH; González-Jiménez M; Waynne K; Baldini F; Babayan SA; Okumu FO
    Sci Rep; 2024 May; 14(1):12100. PubMed ID: 38802488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbiota identified from preserved Anopheles.
    E Silva B; Matsena Zingoni Z; Koekemoer LL; Dahan-Moss YL
    Malar J; 2021 May; 20(1):230. PubMed ID: 34022891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra.
    Milali MP; Kiware SS; Govella NJ; Okumu F; Bansal N; Bozdag S; Charlwood JD; Maia MF; Ogoma SB; Dowell FE; Corliss GF; Sikulu-Lord MT; Povinelli RJ
    PLoS One; 2020; 15(6):e0234557. PubMed ID: 32555660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of malaria vector composition and Plasmodium falciparum infection in mainland Tanzania: 2017-2021 data from the national malaria vector entomological surveillance.
    Mwalimu CD; Kiware S; Nshama R; Derua Y; Machafuko P; Gitanya P; Mwafongo W; Bernard J; Emidi B; Mwingira V; Malima R; Githu V; Masanja B; Mlacha Y; Tungu P; Kabula B; Sambu E; Batengana B; Matowo J; Govella N; Chaki P; Lazaro S; Serbantez N; Kitau J; Magesa SM; Kisinza WN
    Malar J; 2024 Jan; 23(1):29. PubMed ID: 38243220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ability of near-infrared spectroscopy and chemometrics to predict the age of mosquitoes reared under different conditions.
    Ong OTW; Kho EA; Esperança PM; Freebairn C; Dowell FE; Devine GJ; Churcher TS
    Parasit Vectors; 2020 Mar; 13(1):160. PubMed ID: 32228670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Higher outdoor mosquito density and Plasmodium infection rates in and around malaria index case households in low transmission settings of Ethiopia: Implications for vector control.
    Abossie A; Demissew A; Getachew H; Tsegaye A; Degefa T; Habtamu K; Zhong D; Wang X; Lee MC; Zhou G; King CL; Kazura JW; Yan G; Yewhalaw D
    Parasit Vectors; 2024 Feb; 17(1):53. PubMed ID: 38321572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood meal profile and positivity rate with malaria parasites among different malaria vectors in Sudan.
    Altahir O; AbdElbagi H; Abubakr M; Siddig EE; Ahmed A; Mohamed NS
    Malar J; 2022 Apr; 21(1):124. PubMed ID: 35428264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and non-destructive identification of Anopheles gambiae and Anopheles arabiensis mosquito species using Raman spectroscopy via machine learning classification models.
    Omucheni DL; Kaduki KA; Mukabana WR
    Malar J; 2023 Nov; 22(1):342. PubMed ID: 37940964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.