BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 35933385)

  • 1. Adaptation on xylose improves glucose-xylose co-utilization and ethanol production in a carbon catabolite repression (CCR) compromised ethanologenic strain.
    Dev C; Jilani SB; Yazdani SS
    Microb Cell Fact; 2022 Aug; 21(1):154. PubMed ID: 35933385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous glucose and xylose utilization by an
    Kaplan NA; Islam KN; Kanis FC; Verderber JR; Wang X; Jones JA; Koffas MAG
    Appl Environ Microbiol; 2024 Feb; 90(2):e0216923. PubMed ID: 38289128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-Fermentation of Glucose-Xylose Mixtures from Agroindustrial Residues by Ethanologenic
    Sierra-Ibarra E; Vargas-Tah A; Moss-Acosta CL; Trujillo-Martínez B; Molina-Vázquez ER; Rosas-Aburto A; Valdivia-López Á; Hernández-Luna MG; Vivaldo-Lima E; Martínez A
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36558077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of pgi gene in E. coli increases tolerance to furfural and 5-hydroxymethyl furfural in media containing glucose-xylose mixture.
    Jilani SB; Dev C; Eqbal D; Jawed K; Prasad R; Yazdani SS
    Microb Cell Fact; 2020 Jul; 19(1):153. PubMed ID: 32723338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous carbon catabolite repression governs sugar and aromatic co-utilization in
    Shrestha S; Awasthi D; Chen Y; Gin J; Petzold CJ; Adams PD; Simmons BA; Singer SW
    Appl Environ Microbiol; 2023 Oct; 89(10):e0085223. PubMed ID: 37724856
    [No Abstract]   [Full Text] [Related]  

  • 6. Controlling catabolite repression for isobutanol production using glucose and xylose by overexpressing the xylose regulator.
    Lee HJ; Kim B; Kim S; Cho DH; Jung H; Bhatia SK; Gurav R; Ahn J; Park JH; Choi KY; Yang YH
    J Biotechnol; 2022 Nov; 359():21-28. PubMed ID: 36152769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xylose-glucose co-fermentation to ethanol by Escherichia coli strain MS04 using single- and two-stage continuous cultures under micro-aerated conditions.
    Fernández-Sandoval MT; Galíndez-Mayer J; Bolívar F; Gosset G; Ramírez OT; Martinez A
    Microb Cell Fact; 2019 Aug; 18(1):145. PubMed ID: 31443652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement in ethanol productivity of engineered E. coli strain SSY13 in defined medium via adaptive evolution.
    Jilani SB; Venigalla SSK; Mattam AJ; Dev C; Yazdani SS
    J Ind Microbiol Biotechnol; 2017 Sep; 44(9):1375-1384. PubMed ID: 28676891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants.
    Yao R; Hirose Y; Sarkar D; Nakahigashi K; Ye Q; Shimizu K
    Microb Cell Fact; 2011 Aug; 10():67. PubMed ID: 21831320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous fermentation of biomass-derived sugars to ethanol by a co-culture of an engineered Escherichia coli and Saccharomyces cerevisiae.
    Wang L; York SW; Ingram LO; Shanmugam KT
    Bioresour Technol; 2019 Feb; 273():269-276. PubMed ID: 30448678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol.
    Nichols NN; Dien BS; Bothast RJ
    Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):120-5. PubMed ID: 11499918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR.
    Sievert C; Nieves LM; Panyon LA; Loeffler T; Morris C; Cartwright RA; Wang X
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7349-7354. PubMed ID: 28655843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient butanol production without carbon catabolite repression from mixed sugars with Clostridium saccharoperbutylacetonicum N1-4.
    Noguchi T; Tashiro Y; Yoshida T; Zheng J; Sakai K; Sonomoto K
    J Biosci Bioeng; 2013 Dec; 116(6):716-21. PubMed ID: 23809630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient conversion of xylose to ethanol without glucose repression by newly isolated thermotolerant Spathaspora passalidarum CMUWF1-2.
    Rodrussamee N; Sattayawat P; Yamada M
    BMC Microbiol; 2018 Jul; 18(1):73. PubMed ID: 30005621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic co-utilization of biomass-derived sugars enhances aromatic amino acid production by engineered Escherichia coli.
    Liu A; Machas M; Mhatre A; Hajinajaf N; Sarnaik A; Nichols N; Frazer S; Wang X; Varman AM; Nielsen DR
    Biotechnol Bioeng; 2024 Feb; 121(2):784-794. PubMed ID: 37926950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The XylR variant (R121C and P363S) releases arabinose-induced catabolite repression on xylose fermentation and enhances coutilization of lignocellulosic sugar mixtures.
    Martinez R; Flores AD; Dufault ME; Wang X
    Biotechnol Bioeng; 2019 Dec; 116(12):3476-3481. PubMed ID: 31429933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect.
    Lu H; Zhao X; Wang Y; Ding X; Wang J; Garza E; Manow R; Iverson A; Zhou S
    BMC Biotechnol; 2016 Feb; 16():19. PubMed ID: 26895857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evolved xylose transporter from Zymomonas mobilis enhances sugar transport in Escherichia coli.
    Ren C; Chen T; Zhang J; Liang L; Lin Z
    Microb Cell Fact; 2009 Dec; 8():66. PubMed ID: 20003468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic approach to engineer Escherichia coli pathways for co-utilization of a glucose-xylose mixture.
    Chiang CJ; Lee HM; Guo HJ; Wang ZW; Lin LJ; Chao YP
    J Agric Food Chem; 2013 Aug; 61(31):7583-90. PubMed ID: 23848609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.