These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35933464)

  • 1. Three-dimensional imaging of waves and floes in the marginal ice zone during a cyclone.
    Alberello A; Bennetts LG; Onorato M; Vichi M; MacHutchon K; Eayrs C; Ntamba BN; Benetazzo A; Bergamasco F; Nelli F; Pattani R; Clarke H; Tersigni I; Toffoli A
    Nat Commun; 2022 Aug; 13(1):4590. PubMed ID: 35933464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory, modelling and observations of marginal ice zone dynamics: multidisciplinary perspectives and outlooks.
    Bennetts LG; Bitz CM; Feltham DL; Kohout AL; Meylan MH
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20210265. PubMed ID: 36088926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wind waves in sea ice of the western Arctic and a global coupled wave-ice model.
    Cooper VT; Roach LA; Thomson J; Brenner SD; Smith MM; Meylan MH; Bitz CM
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20210258. PubMed ID: 36088918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling wave-induced sea ice break-up in the marginal ice zone.
    Montiel F; Squire VA
    Proc Math Phys Eng Sci; 2017 Oct; 473(2206):20170258. PubMed ID: 29118659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Floes, the marginal ice zone and coupled wave-sea-ice feedbacks.
    Horvat C
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20210252. PubMed ID: 36088924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong and highly variable push of ocean waves on Southern Ocean sea ice.
    Stopa JE; Sutherland P; Ardhuin F
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):5861-5865. PubMed ID: 29784779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling wave-ice interactions in three dimensions in the marginal ice zone.
    Perrie W; Meylan MH; Toulany B; Casey MP
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20210263. PubMed ID: 36088923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of anomalous spectral downshifting of waves in the Okhotsk Sea Marginal Ice Zone.
    Waseda T; Alberello A; Nose T; Toyota T; Kodaira T; Fujiwara Y
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20210256. PubMed ID: 36088931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional time-domain scattering of waves in the marginal ice zone.
    Meylan MH; Bennetts LG
    Philos Trans A Math Phys Eng Sci; 2018 Sep; 376(2129):. PubMed ID: 30126908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wave propagation in the marginal ice zone: connections and feedback mechanisms within the air-ice-ocean system.
    Thomson J
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20210251. PubMed ID: 36088921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remote sensing of the fram strait marginal ice zone.
    Shuchman RA; Burns BA; Johannessen OM; Josberger EG; Campbell WJ; Manley TO; Lannelongue N
    Science; 1987 Apr; 236(4800):429-31. PubMed ID: 17817127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model study of convergent dynamics in the marginal ice zone.
    Auclair JP; Dumont D; Lemieux JF; Ritchie H
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20210261. PubMed ID: 36088920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A prognosticative synopsis of contemporary marginal ice zone research.
    Squire VA
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20220094. PubMed ID: 36088917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling attenuation of irregular wave fields by artificial ice floes in the laboratory.
    Toffoli A; Pitt JPA; Alberello A; Bennetts LG
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20210255. PubMed ID: 36088929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrete-element model for the interaction between ocean waves and sea ice.
    Xu Z; Tartakovsky AM; Pan W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016703. PubMed ID: 22400697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marginal ice zone dynamics: history, definitions and research perspectives.
    Dumont D
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20210253. PubMed ID: 36088925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-scale satellite observations of Arctic sea ice: new insight into the life cycle of the floe size distribution.
    Hwang B; Wang Y
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20210259. PubMed ID: 36088919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fresh look at how ocean waves and sea ice interact.
    Squire VA
    Philos Trans A Math Phys Eng Sci; 2018 Sep; 376(2129):. PubMed ID: 30126913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Storm-induced sea-ice breakup and the implications for ice extent.
    Kohout AL; Williams MJ; Dean SM; Meylan MH
    Nature; 2014 May; 509(7502):604-7. PubMed ID: 24870546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical framework for the emergent floe size distribution in the marginal ice zone: the case for log-normality.
    Montiel F; Mokus N
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20210257. PubMed ID: 36088932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.