These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35933507)

  • 1. Construction of magnetic nanochains to achieve magnetic energy coupling in scaffold.
    Shuai C; Chen X; He C; Qian G; Shuai Y; Peng S; Deng Y; Yang W
    Biomater Res; 2022 Aug; 26(1):38. PubMed ID: 35933507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic-Field-Induced Improvement of Photothermal Sterilization Performance by Fe
    Xu K; Fang Q; Wang J; Hui A; Xuan S
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro Magnetic Field Produced by Fe
    Bin S; Wang A; Guo W; Yu L; Feng P
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32911730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic manipulation of Fe
    Zhang Y; Su B; Tian Y; Yu Z; Wu X; Ding J; Wu C; Wei D; Yin H; Sun J; Fan H
    Acta Biomater; 2023 Sep; 168():470-483. PubMed ID: 37495167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of 1D Fe₃O₄/P(MBAAm-co-MAA) nanochains as stabilizers for Ag nanoparticles and templates for hollow mesoporous structure, and their applications in catalytic reaction and drug delivery.
    Zhang W; Si X; Liu B; Bian G; Qi Y; Yang X; Li C
    J Colloid Interface Sci; 2015 Oct; 456():145-54. PubMed ID: 26119084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Magnetic-Field Guided Interface Coassembly Approach to Magnetic Mesoporous Silica Nanochains for Osteoclast-Targeted Inhibition and Heterogeneous Nanocatalysis.
    Wan L; Song H; Chen X; Zhang Y; Yue Q; Pan P; Su J; Elzatahry AA; Deng Y
    Adv Mater; 2018 Jun; 30(25):e1707515. PubMed ID: 29733478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical-Chemical Coupling Coassembly Approach to Branched Magnetic Mesoporous Nanochains with Adjustable Surface Roughness.
    Huang X; Liu M; Lu Q; Lv K; Wang L; Yin S; Yuan M; Li Q; Li X; Zhao T; Zhao D
    Adv Sci (Weinh); 2024 Jun; 11(23):e2309564. PubMed ID: 38582520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-shell Fe
    Qiao M; Tian Y; Li J; He X; Lei X; Zhang Q; Ma M; Meng X
    J Colloid Interface Sci; 2022 Mar; 609():330-340. PubMed ID: 34896833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic self-assembly of
    Yang W; Zhong Y; He C; Peng S; Yang Y; Qi F; Feng P; Shuai C
    J Adv Res; 2020 Jul; 24():191-203. PubMed ID: 32368357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteogenic differentiation of MC3T3-E1 cells on poly(L-lactide)/Fe3O4 nanofibers with static magnetic field exposure.
    Cai Q; Shi Y; Shan D; Jia W; Duan S; Deng X; Yang X
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():166-73. PubMed ID: 26117751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Layer-by-Layer Self-Assembly toward Enantiomeric Poly(lactide) Stereocomplex Coated Magnetite Nanocarrier for Highly Tunable Drug Deliveries.
    Li Z; Yuan D; Jin G; Tan BH; He C
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1842-53. PubMed ID: 26717323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcrystalline growth of PLLA on carbon fiber grafted with nano-SiO
    Feng P; Jia J; Peng S; Shuai Y; Pan H; Bai X; Shuai C
    Biomater Res; 2022 Jan; 26(1):2. PubMed ID: 35057863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic-assembly mechanism of superparamagneto-plasmonic nanoparticles on a charged surface.
    Tran VT; Zhou H; Lee S; Hong SC; Kim J; Jeong SY; Lee J
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8650-8. PubMed ID: 25856000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NiCo
    Ma M; Li W; Tong Z; Ma Y; Bi Y; Liao Z; Zhou J; Wu G; Li M; Yue J; Song X; Zhang X
    J Colloid Interface Sci; 2020 Oct; 578():58-68. PubMed ID: 32505914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement on controllable fabrication of streptavidin-modified three-layer core-shell Fe3O4@SiO2@Au magnetic nanocomposites with low fluorescence background.
    Jiang H; Zeng X; Xi Z; Liu M; Li C; Li Z; Jin L; Wang Z; Deng Y; He N
    J Biomed Nanotechnol; 2013 Apr; 9(4):674-84. PubMed ID: 23621028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Fe3O4/SiO2/Gd2O(CO3)2 core/shell/shell nanoparticles as T1 and T2 dual mode MRI contrast agent.
    Yang M; Gao L; Liu K; Luo C; Wang Y; Yu L; Peng H; Zhang W
    Talanta; 2015 Jan; 131():661-5. PubMed ID: 25281156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some Preliminary Results to Eradicate Leukemic Cells in Extracorporeal Circulation by Actuating Doxorubicin-Loaded Nanochains of Fe
    Zheng X; Mai X; Bao S; Wang P; Hong Y; Han Y; Sun J; Xiong F
    Cells; 2022 Jun; 11(13):. PubMed ID: 35805091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of one-dimensional Fe3O4/P(GMA-DVB) nanochains by magnetic-field-induced precipitation polymerization.
    Ma M; Zhang Q; Dou J; Zhang H; Yin D; Geng W; Zhou Y
    J Colloid Interface Sci; 2012 May; 374(1):339-44. PubMed ID: 22386309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel core-shell cerium(IV)-immobilized magnetic polymeric microspheres for selective enrichment and rapid separation of phosphopeptides.
    Wang ZG; Cheng G; Liu YL; Zhang JL; Sun DH; Ni JZ
    J Colloid Interface Sci; 2014 Mar; 417():217-26. PubMed ID: 24407680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonsacrificial Template Synthesis of Magnetic-Based Yolk-Shell Nanostructures for the Removal of Acetaminophen in Fenton-like Systems.
    Do QC; Kim DG; Ko SO
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28508-28518. PubMed ID: 28771304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.