BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 35933554)

  • 1. The minimal FLASH sparing effect needed to compensate the increase of radiobiological damage due to hypofractionation for late-reacting tissues.
    Böhlen TT; Germond JF; Bourhis J; Bailat C; Bochud F; Moeckli R
    Med Phys; 2022 Dec; 49(12):7672-7682. PubMed ID: 35933554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical Note: Break-even dose level for hypofractionated treatment schedules.
    Böhlen TT; Germond JF; Bourhis J; Vozenin MC; Bailat C; Bochud F; Moeckli R
    Med Phys; 2021 Nov; 48(11):7534-7540. PubMed ID: 34609744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some implications of linear-quadratic-linear radiation dose-response with regard to hypofractionation.
    Astrahan M
    Med Phys; 2008 Sep; 35(9):4161-72. PubMed ID: 18841869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variability of α/β ratios for prostate cancer with the fractionation schedule: caution against using the linear-quadratic model for hypofractionated radiotherapy.
    Cui M; Gao XS; Li X; Ma M; Qi X; Shibamoto Y
    Radiat Oncol; 2022 Mar; 17(1):54. PubMed ID: 35303922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What hypofractionated protocols should be tested for prostate cancer?
    Fowler JF; Ritter MA; Chappell RJ; Brenner DJ
    Int J Radiat Oncol Biol Phys; 2003 Jul; 56(4):1093-104. PubMed ID: 12829147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of reoxygenation on hypofractionated radiotherapy of prostate cancer.
    Kuperman VY; Lubich LM
    Med Phys; 2020 Oct; 47(10):5383-5391. PubMed ID: 32583529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Obtaining organ-specific radiobiological parameters from clinical data for radiation therapy planning of head and neck cancers.
    Quashie EE; Li XA; Prior P; Awan M; Schultz C; Tai A
    Phys Med Biol; 2023 Dec; 68(24):. PubMed ID: 37903437
    [No Abstract]   [Full Text] [Related]  

  • 8. The radiobiology of hypofractionation.
    Nahum AE
    Clin Oncol (R Coll Radiol); 2015 May; 27(5):260-9. PubMed ID: 25797579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compatibility of the linear-quadratic formalism and biologically effective dose concept to high-dose-per-fraction irradiation in a murine tumor.
    Otsuka S; Shibamoto Y; Iwata H; Murata R; Sugie C; Ito M; Ogino H
    Int J Radiat Oncol Biol Phys; 2011 Dec; 81(5):1538-43. PubMed ID: 22115556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modern hypofractionation schedules for tangential whole breast irradiation decrease the fraction size-corrected dose to the heart.
    Appelt AL; Vogelius IR; Bentzen SM
    Clin Oncol (R Coll Radiol); 2013 Mar; 25(3):147-52. PubMed ID: 22910644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges in radiobiological modeling: can we decide between LQ and LQ-L models based on reviewed clinical NSCLC treatment outcome data?
    Santiago A; Barczyk S; Jelen U; Engenhart-Cabillic R; Wittig A
    Radiat Oncol; 2016 May; 11():67. PubMed ID: 27154064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiobiology of hypofractionated stereotactic radiotherapy: what are the optimal fractionation schedules?
    Shibamoto Y; Miyakawa A; Otsuka S; Iwata H
    J Radiat Res; 2016 Aug; 57 Suppl 1(Suppl 1):i76-i82. PubMed ID: 27006380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applicability of the linear-quadratic model to single and fractionated radiotherapy schedules: an experimental study.
    Miyakawa A; Shibamoto Y; Otsuka S; Iwata H
    J Radiat Res; 2014 May; 55(3):451-4. PubMed ID: 24351457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vitro Radiobiological Advantages of Hypofractionation Compared with Conventional Fractionation: Early-Passage NSCLC Cells are Less Aggressive after Hypofractionation.
    Zhang H; Wan C; Huang J; Yang C; Qin Y; Lu Y; Ma J; Wu B; Xu S; Wu G; Yang K
    Radiat Res; 2018 Dec; 190(6):584-595. PubMed ID: 30234458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of optimum dose per fraction for high LET radiations: implications for proton radiotherapy.
    Jones B; Dale RG
    Int J Radiat Oncol Biol Phys; 2000 Dec; 48(5):1549-57. PubMed ID: 11121661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological equivalent dose assessment of the consequences of hypofractionated radiotherapy.
    Jones B; Dale RG; Finst P; Khaksar SJ
    Int J Radiat Oncol Biol Phys; 2000 Jul; 47(5):1379-84. PubMed ID: 10889393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standard versus hypofractionated intensity-modulated radiotherapy for prostate cancer: assessing the impact on dose modulation and normal tissue effects when using patient-specific cancer biology.
    Her EJ; Ebert MA; Kennedy A; Reynolds HM; Sun Y; Williams S; Haworth A
    Phys Med Biol; 2021 Feb; 66(4):045007. PubMed ID: 32408293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The optimal fraction size in high-dose-rate brachytherapy: dependency on tissue repair kinetics and low-dose rate.
    Sminia P; Schneider CJ; Fowler JF
    Int J Radiat Oncol Biol Phys; 2002 Mar; 52(3):844-9. PubMed ID: 11849810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normal Tissue Sparing by FLASH as a Function of Single-Fraction Dose: A Quantitative Analysis.
    Böhlen TT; Germond JF; Bourhis J; Vozenin MC; Ozsahin EM; Bochud F; Bailat C; Moeckli R
    Int J Radiat Oncol Biol Phys; 2022 Dec; 114(5):1032-1044. PubMed ID: 35810988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The radiobiology of prostate cancer including new aspects of fractionated radiotherapy.
    Fowler JF
    Acta Oncol; 2005; 44(3):265-76. PubMed ID: 16076699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.