BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35933602)

  • 1. Rsn-2-mediated directed foam enrichment of β-lactamase.
    Krause T; Keshavarzi B; Dressel J; Heitkam S; Ansorge-Schumacher MB
    Biotechnol J; 2022 Dec; 17(12):e2200271. PubMed ID: 35933602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foam fractionation Tags (F-Tags) enabling surfactant-free, activity-preserving recovery of enzymes.
    Krause T; Keshavarzi B; Heitkam S; Ansorge-Schumacher MB
    Appl Microbiol Biotechnol; 2024 Jan; 108(1):140. PubMed ID: 38231394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH stability and comparative evaluation of ranaspumin-2 foam for application in biochemical reactors.
    Choi HJ; Ebersbacher CF; Quan FS; Montemagno CD
    Nanotechnology; 2013 Feb; 24(5):055603. PubMed ID: 23324183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Conformation of Interfacially Adsorbed Ranaspumin-2 Is an Arrested State on the Unfolding Pathway.
    Morris RJ; Brandani GB; Desai V; Smith BO; Schor M; MacPhee CE
    Biophys J; 2016 Aug; 111(4):732-742. PubMed ID: 27558717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutagenic effect of acridine orange on the expression of penicillin G acylase and beta-lactamase in Escherichia coli.
    Arshad R; Farooq S; Iqbal N; Ali SS
    Lett Appl Microbiol; 2006 Feb; 42(2):94-101. PubMed ID: 16441371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current applications of foams formed from mixed surfactant-polymer solutions.
    Bureiko A; Trybala A; Kovalchuk N; Starov V
    Adv Colloid Interface Sci; 2015 Aug; 222():670-7. PubMed ID: 25455806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique crystal structure of a novel surfactant protein from the foam nest of the frog Leptodactylus vastus.
    Cavalcante Hissa D; Arruda Bezerra G; Birner-Gruenberger R; Paulino Silva L; Usón I; Gruber K; Maciel Melo VM
    Chembiochem; 2014 Feb; 15(3):393-8. PubMed ID: 24442854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of different co-foaming agents on PFAS removal from the environment by foam fractionation.
    Buckley T; Karanam K; Han H; Vo HNP; Shukla P; Firouzi M; Rudolph V
    Water Res; 2023 Feb; 230():119532. PubMed ID: 36584659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frog Foam Nest Protein Diversity and Synthesis.
    Hissa DC; Bezerra WM; Freitas CD; Ramos MV; Lopes JL; Beltramini LM; Roberto IJ; Cascon P; Melo VM
    J Exp Zool A Ecol Genet Physiol; 2016 Aug; 325(7):425-33. PubMed ID: 27460953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A non-foaming proteosurfactant engineered from Ranaspumin-2.
    Frey SL; Todd J; Wurtzler E; Strelez CR; Wendell D
    Colloids Surf B Biointerfaces; 2015 Sep; 133():239-45. PubMed ID: 26117804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-efficiency foam fractionation of anthocyanin from perilla leaves using surfactant-free active Al
    Chen L; Hu N; Zhao C; Sun X; Han R; Lv Y; Zhang Z
    Food Chem; 2023 Nov; 427():136708. PubMed ID: 37379747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing cellulase foam fractionation with addition of surfactant.
    Burapatana V; Prokop A; Tanner RD
    Appl Biochem Biotechnol; 2005; 121-124():541-52. PubMed ID: 15920261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foam nest components of the túngara frog: a cocktail of proteins conferring physical and biological resilience.
    Fleming RI; Mackenzie CD; Cooper A; Kennedy MW
    Proc Biol Sci; 2009 May; 276(1663):1787-95. PubMed ID: 19324764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-existence of beta-lactamase and penicillin acylase in bacteria; detection and quantitative determination of enzyme activities.
    Baker WL
    J Appl Bacteriol; 1992 Jul; 73(1):14-22. PubMed ID: 1512174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of the enzyme beta-lactamase on biotin-derivatized poly(L-lysine)-g-poly(ethylene glycol)-coated sensor chips: a study on oriented attachment and surface activity by enzyme kinetics and in situ optical sensing.
    Zhen G; Eggli V; Vörös J; Zammaretti P; Textor M; Glockshuber R; Kuennemann E
    Langmuir; 2004 Nov; 20(24):10464-73. PubMed ID: 15544374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of Fluoroquinolone Antibiotics at the Gas-Liquid Interface Using Ionic Surfactants.
    Ghosh R; Hareendran H; Subramaniam P
    Langmuir; 2019 Oct; 35(39):12839-12850. PubMed ID: 31495173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calmodulin-mediated reversible immobilization of enzymes.
    Daunert S; Bachas LG; Schauer-Vukasinovic V; Gregory KJ; Schrift G; Deo S
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):20-7. PubMed ID: 17276043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ranaspumin-2: structure and function of a surfactant protein from the foam nests of a tropical frog.
    Mackenzie CD; Smith BO; Meister A; Blume A; Zhao X; Lu JR; Kennedy MW; Cooper A
    Biophys J; 2009 Jun; 96(12):4984-92. PubMed ID: 19527658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of foam surfactant for foam-flushing technique in remediation of DDT-contaminated soil using data envelopment analysis method.
    Wang X; Chen J; Lv C
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):2994-3003. PubMed ID: 25226831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the carrier protein and disulfide formation in the folding of beta-lactamase fusion proteins in the endoplasmic reticulum of yeast.
    Simonen M; Jämsä E; Makarow M
    J Biol Chem; 1994 May; 269(19):13887-92. PubMed ID: 8188666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.