These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 35933704)
21. Chemical-defined and albumin-free generation of human atrial and ventricular myocytes from human pluripotent stem cells. Pei F; Jiang J; Bai S; Cao H; Tian L; Zhao Y; Yang C; Dong H; Ma Y Stem Cell Res; 2017 Mar; 19():94-103. PubMed ID: 28110125 [TBL] [Abstract][Full Text] [Related]
22. Manufacturing human pluripotent stem cell derived endothelial cells in scalable and cell-friendly microenvironments. Lin H; Du Q; Li Q; Wang O; Wang Z; Elowsky C; Liu K; Zhang C; Chung S; Duan B; Lei Y Biomater Sci; 2018 Dec; 7(1):373-388. PubMed ID: 30484784 [TBL] [Abstract][Full Text] [Related]
23. Single cell heterogeneity in human pluripotent stem cells. Yang S; Cho Y; Jang J BMB Rep; 2021 Oct; 54(10):505-515. PubMed ID: 34488931 [TBL] [Abstract][Full Text] [Related]
24. Application of the Pluripotent Stem Cells and Genomics in Cardiovascular Research-What We Have Learnt and Not Learnt until Now. Simeon M; Dangwal S; Sachinidis A; Doss MX Cells; 2021 Nov; 10(11):. PubMed ID: 34831333 [TBL] [Abstract][Full Text] [Related]
25. Exploring the effects of cell seeding density on the differentiation of human pluripotent stem cells to brain microvascular endothelial cells. Wilson HK; Canfield SG; Hjortness MK; Palecek SP; Shusta EV Fluids Barriers CNS; 2015 May; 12():13. PubMed ID: 25994964 [TBL] [Abstract][Full Text] [Related]
26. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Lei Y; Schaffer DV Proc Natl Acad Sci U S A; 2013 Dec; 110(52):E5039-48. PubMed ID: 24248365 [TBL] [Abstract][Full Text] [Related]
27. Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Chen VC; Ye J; Shukla P; Hua G; Chen D; Lin Z; Liu JC; Chai J; Gold J; Wu J; Hsu D; Couture LA Stem Cell Res; 2015 Sep; 15(2):365-75. PubMed ID: 26318718 [TBL] [Abstract][Full Text] [Related]
28. Female human pluripotent stem cells rapidly lose X chromosome inactivation marks and progress to a skewed methylation pattern during culture. Geens M; Seriola A; Barbé L; Santalo J; Veiga A; Dée K; Van Haute L; Sermon K; Spits C Mol Hum Reprod; 2016 Apr; 22(4):285-98. PubMed ID: 26786180 [TBL] [Abstract][Full Text] [Related]
29. Scalable manufacturing of clinical-grade differentiated cardiomyocytes derived from human-induced pluripotent stem cells for regenerative therapy. Morita Y; Kishino Y; Fukuda K; Tohyama S Cell Prolif; 2022 Aug; 55(8):e13248. PubMed ID: 35534945 [TBL] [Abstract][Full Text] [Related]
30. Chemical Reversion of Conventional Human Pluripotent Stem Cells to a Naïve-like State with Improved Multilineage Differentiation Potency. Park TS; Zimmerlin L; Evans-Moses R; Zambidis ET J Vis Exp; 2018 Jun; (136):. PubMed ID: 29939183 [TBL] [Abstract][Full Text] [Related]
31. Human cardiomyocyte generation from pluripotent stem cells: A state-of-art. Talkhabi M; Aghdami N; Baharvand H Life Sci; 2016 Jan; 145():98-113. PubMed ID: 26682938 [TBL] [Abstract][Full Text] [Related]
32. High-Efficiency Serum-Free Feeder-Free Erythroid Differentiation of Human Pluripotent Stem Cells Using Small Molecules. Olivier EN; Marenah L; McCahill A; Condie A; Cowan S; Mountford JC Stem Cells Transl Med; 2016 Oct; 5(10):1394-1405. PubMed ID: 27400796 [TBL] [Abstract][Full Text] [Related]
33. Engineered peptide modified hydrogel platform for propagation of human pluripotent stem cells. Richardson T; Wiegand C; Adisa F; Ravikumar K; Candiello J; Kumta P; Banerjee I Acta Biomater; 2020 Sep; 113():228-239. PubMed ID: 32603868 [TBL] [Abstract][Full Text] [Related]
34. The telomerase inhibitor AZT enhances differentiation and prevents overgrowth of human pluripotent stem cell-derived neural progenitors. Hu Y; Fang KH; Shen LP; Cao SY; Yuan F; Su Y; Xu M; Pan Y; Chen Y; Liu Y J Biol Chem; 2018 Jun; 293(23):8722-8733. PubMed ID: 29628445 [TBL] [Abstract][Full Text] [Related]
35. Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions. Meng G; Liu S; Rancourt DE Stem Cells Dev; 2012 Jul; 21(11):2036-48. PubMed ID: 22149941 [TBL] [Abstract][Full Text] [Related]
36. Stable propagation of human embryonic and induced pluripotent stem cells on decellularized human substrates. Abraham S; Sheridan SD; Miller B; Rao RR Biotechnol Prog; 2010; 26(4):1126-34. PubMed ID: 20730767 [TBL] [Abstract][Full Text] [Related]
37. Differentiation of human pluripotent stem cells into nephron progenitor cells in a serum and feeder free system. Kang M; Han YM PLoS One; 2014; 9(4):e94888. PubMed ID: 24728509 [TBL] [Abstract][Full Text] [Related]
38. Perspective on human pluripotent stem cell-derived cardiomyocytes in heart disease modeling and repair. Li Q; Wang J; Wu Q; Cao N; Yang HT Stem Cells Transl Med; 2020 Oct; 9(10):1121-1128. PubMed ID: 32725800 [TBL] [Abstract][Full Text] [Related]
39. Stencil Micropatterning for Spatial Control of Human Pluripotent Stem Cell Fate Heterogeneity. Yuan J; Sahni G; Toh YC Methods Mol Biol; 2016; 1516():171-181. PubMed ID: 27032943 [TBL] [Abstract][Full Text] [Related]
40. Process engineering of human pluripotent stem cells for clinical application. Serra M; Brito C; Correia C; Alves PM Trends Biotechnol; 2012 Jun; 30(6):350-9. PubMed ID: 22541338 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]