These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35933804)

  • 1. Prediction of protein mononucleotide binding sites using AlphaFold2 and machine learning.
    Yamaguchi S; Nakashima H; Moriwaki Y; Terada T; Shimizu K
    Comput Biol Chem; 2022 Oct; 100():107744. PubMed ID: 35933804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognizing five molecular ligand-binding sites with similar chemical structure.
    Hu X; Ge R; Feng Z
    J Comput Chem; 2020 Jan; 41(2):110-118. PubMed ID: 31642535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Protein-ATP Binding Residues Based on Ensemble of Deep Convolutional Neural Networks and LightGBM Algorithm.
    Song J; Liu G; Jiang J; Zhang P; Liang Y
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using multiple convolutional window scanning of convolutional neural network for an efficient prediction of ATP-binding sites in transport proteins.
    Nguyen TT; Chen S; Ho QT; Ou YY
    Proteins; 2022 Jul; 90(7):1486-1492. PubMed ID: 35246878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Protein-Ligand Binding Sites by Sequence Information and Ensemble Classifier.
    Ding Y; Tang J; Guo F
    J Chem Inf Model; 2017 Dec; 57(12):3149-3161. PubMed ID: 29125297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TargetATPsite: a template-free method for ATP-binding sites prediction with residue evolution image sparse representation and classifier ensemble.
    Yu DJ; Hu J; Huang Y; Shen HB; Qi Y; Tang ZM; Yang JY
    J Comput Chem; 2013 Apr; 34(11):974-85. PubMed ID: 23288787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of protein-protein interaction sites from weakly homologous template structures using meta-threading and machine learning.
    Maheshwari S; Brylinski M
    J Mol Recognit; 2015 Jan; 28(1):35-48. PubMed ID: 26268369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Sequence-Based Dynamic Ensemble Learning System for Protein Ligand-Binding Site Prediction.
    Chen P; Hu S; Zhang J; Gao X; Li J; Xia J; Wang B
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):901-912. PubMed ID: 26661785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of ATP-binding sites in membrane proteins using a two-dimensional convolutional neural network.
    Nguyen TT; Le NQ; Kusuma RMI; Ou YY
    J Mol Graph Model; 2019 Nov; 92():86-93. PubMed ID: 31344547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing structure and disorder prediction tools for
    Aubel M; Eicholt L; Bornberg-Bauer E
    F1000Res; 2023; 12():347. PubMed ID: 37113259
    [No Abstract]   [Full Text] [Related]  

  • 11. Constructing query-driven dynamic machine learning model with application to protein-ligand binding sites prediction.
    Yu DJ; Hu J; Li QM; Tang ZM; Yang JY; Shen HB
    IEEE Trans Nanobioscience; 2015 Jan; 14(1):45-58. PubMed ID: 25730499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3DLigandSite: structure-based prediction of protein-ligand binding sites.
    McGreig JE; Uri H; Antczak M; Sternberg MJE; Michaelis M; Wass MN
    Nucleic Acids Res; 2022 Jul; 50(W1):W13-W20. PubMed ID: 35412635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATPbind: Accurate Protein-ATP Binding Site Prediction by Combining Sequence-Profiling and Structure-Based Comparisons.
    Hu J; Li Y; Zhang Y; Yu DJ
    J Chem Inf Model; 2018 Feb; 58(2):501-510. PubMed ID: 29361215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-Free Assays to Measure Effects of Regulatory Ligands on AMPK.
    Fyffe FA; Hawley SA; Gray A; Hardie DG
    Methods Mol Biol; 2018; 1732():69-86. PubMed ID: 29480469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that [3H]-alpha,beta-methylene ATP may label an endothelial-derived cell line 5'-nucleotidase with high affinity.
    Michel AD; Chau NM; Fan TP; Frost EE; Humphrey PP
    Br J Pharmacol; 1995 Jul; 115(5):767-74. PubMed ID: 8548175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on adenosine triphosphate transphosphorylases. XVIII. Synthesis and preparation of peptides and peptide fragments of rabbit muscle ATP-AMP transphosphorylase (adenylate kinase) and their nucleotide-binding properties.
    Kuby SA; Hamada M; Johnson MS; Russell GA; Manship M; Palmieri RH; Fleming G; Bredt DS; Mildvan AS
    J Protein Chem; 1989 Aug; 8(4):549-62. PubMed ID: 2553049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNABind: a hybrid algorithm for structure-based prediction of DNA-binding residues by combining machine learning- and template-based approaches.
    Liu R; Hu J
    Proteins; 2013 Nov; 81(11):1885-99. PubMed ID: 23737141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are Deep Learning Structural Models Sufficiently Accurate for Free-Energy Calculations? Application of FEP+ to AlphaFold2-Predicted Structures.
    Beuming T; Martín H; Díaz-Rovira AM; Díaz L; Guallar V; Ray SS
    J Chem Inf Model; 2022 Sep; 62(18):4351-4360. PubMed ID: 36099477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of adenosine and adenylnucleotides with the human platelet membrane. Further characterization of the ADP binding sites.
    Bauvois B; Legrand C; Caen JP
    Haemostasis; 1980; 9(2):92-104. PubMed ID: 7358322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The switching mechanism of the mitochondrial ADP/ATP carrier explored by free-energy landscapes.
    Pietropaolo A; Pierri CL; Palmieri F; Klingenberg M
    Biochim Biophys Acta; 2016 Jun; 1857(6):772-81. PubMed ID: 26874054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.