These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35933812)

  • 1. Effects of pipeline geometry, sample volume, and flow rate on pb monitoring outcomes in copper pipe drinking water supply systems.
    Chang L
    Water Res; 2022 Aug; 222():118890. PubMed ID: 35933812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the Causes of Excess Lead in Drinking Water Supply Systems of Densely Populated High-Rise Buildings in Hong Kong.
    Chan SN; Chang L; Choi KW; Lee JHW; Fawell JK; Kwok KYT
    Environ Sci Technol; 2020 Nov; 54(22):14322-14333. PubMed ID: 33142055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sampling in schools and large institutional buildings: Implications for regulations, exposure and management of lead and copper.
    Doré E; Deshommes E; Andrews RC; Nour S; Prévost M
    Water Res; 2018 Sep; 140():110-122. PubMed ID: 29704756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of lead leaching from galvanic corrosion of lead-containing components in copper pipe drinking water supply systems.
    Chang L; Lee JHW; Fung YS
    J Hazard Mater; 2022 Aug; 436():129169. PubMed ID: 35739706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling lead concentration in drinking water of residential plumbing pipes and hot water tanks.
    Chowdhury S; Kabir F; Mazumder MAJ; Zahir MH
    Sci Total Environ; 2018 Sep; 635():35-44. PubMed ID: 29660725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variability and sampling of lead (Pb) in drinking water: Assessing potential human exposure depends on the sampling protocol.
    Triantafyllidou S; Burkhardt J; Tully J; Cahalan K; DeSantis M; Lytle D; Schock M
    Environ Int; 2021 Jan; 146():106259. PubMed ID: 33395926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Community Water Service on Lead in Drinking Water in an Environmental Justice Community.
    Gibson JM; Desclos A; Harrington J; McElmurry SP; Mulhern R
    Environ Sci Technol; 2024 Jan; 58(3):1441-1451. PubMed ID: 38190439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lead and copper release from full and partially replaced harvested lead service lines: Impact of stagnation time prior to sampling and water quality.
    Doré E; Deshommes E; Laroche L; Nour S; Prévost M
    Water Res; 2019 Mar; 150():380-391. PubMed ID: 30550868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of sampling approach and daily water usage on lead levels measured at the tap.
    Lytle DA; Formal C; Cahalan K; Muhlen C; Triantafyllidou S
    Water Res; 2021 Jun; 197():117071. PubMed ID: 33799082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Widespread copper and lead contamination of household drinking water, New South Wales, Australia.
    Harvey PJ; Handley HK; Taylor MP
    Environ Res; 2016 Nov; 151():275-285. PubMed ID: 27512893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution system water age can create premise plumbing corrosion hotspots.
    Masters S; Parks J; Atassi A; Edwards MA
    Environ Monit Assess; 2015 Sep; 187(9):559. PubMed ID: 26251058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of flow rate and lead/copper pipe sequence on lead release from service lines.
    Cartier C; Arnold RB; Triantafyllidou S; Prévost M; Edwards M
    Water Res; 2012 Sep; 46(13):4142-52. PubMed ID: 22677500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring the aftermath of Flint drinking water contamination crisis: Another case of sampling bias?
    Goovaerts P
    Sci Total Environ; 2017 Jul; 590-591():139-153. PubMed ID: 28259435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Profile sampling to characterize particulate lead risks in potable water.
    Clark B; Masters S; Edwards M
    Environ Sci Technol; 2014 Jun; 48(12):6836-43. PubMed ID: 24865841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of lead release potential of new premise plumbing materials.
    Lei IL; Ng DQ; Sable SS; Lin YP
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):27971-27981. PubMed ID: 30066071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inherent variability in lead and copper collected during standardized sampling.
    Masters S; Parks J; Atassi A; Edwards MA
    Environ Monit Assess; 2016 Mar; 188(3):177. PubMed ID: 26896965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the sources of metal (lead) contamination in drinking waters in north-eastern Tasmania using lead isotopic compositions.
    Harvey PJ; Handley HK; Taylor MP
    Environ Sci Pollut Res Int; 2015 Aug; 22(16):12276-88. PubMed ID: 25895456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermo-mechanical processing of brass components for potable-water usage increases risks of Pb leaching.
    Siu KW; Kwok JCM; Ngan AHW
    Water Res; 2020 Nov; 186():116414. PubMed ID: 32947102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced copper release from pipes by alternating stagnation and flow events.
    Calle GR; Vargas IT; Alsina MA; Pasten PA; Pizarro GE
    Environ Sci Technol; 2007 Nov; 41(21):7430-6. PubMed ID: 18044522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Lead Release in a Simulated Lead-Free Premise Plumbing System Using a Sequential Sampling Approach.
    Ng DQ; Lin YP
    Int J Environ Res Public Health; 2016 Feb; 13(3):. PubMed ID: 26927154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.