These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35933818)

  • 1. Regulation, quantification and application of the effect of functional groups on anion selectivity in capacitive deionization.
    Deng W; Chen Y; Wang Z; Chen X; Gao M; Chen F; Chen W; Ao T
    Water Res; 2022 Aug; 222():118927. PubMed ID: 35933818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective adsorption of phosphate by carboxyl-modified activated carbon electrodes for capacitive deionization.
    Miao L; Deng W; Chen X; Gao M; Chen W; Ao T
    Water Sci Technol; 2021 Oct; 84(7):1757-1773. PubMed ID: 34662311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selectivity adsorption of sulfate by amino-modified activated carbon during capacitive deionization.
    Chen X; Deng W; Miao L; Gao M; Ao T; Chen W; Ueyama T; Dai Q
    Environ Technol; 2023 Apr; 44(10):1505-1517. PubMed ID: 34762018
    [No Abstract]   [Full Text] [Related]  

  • 4. Treatment of low-level Cu(II) wastewater and regeneration through a novel capacitive deionization-electrodeionization (CDI-EDI) technology.
    Zhao C; Zhang L; Ge R; Zhang A; Zhang C; Chen X
    Chemosphere; 2019 Feb; 217():763-772. PubMed ID: 30448756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion-exchange polymers modified bacterial cellulose electrodes for the selective removal of nitrite ions from tail water of dyeing wastewater.
    Li D; Ning XA; Yuan Y; Hong Y; Zhang J
    J Environ Sci (China); 2020 May; 91():62-72. PubMed ID: 32172983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and theoretical study of a new CDI device for the treatment of desulfurization wastewater.
    Liu C; Ma L; Xu Y; Wang F; Tan Y; Huang L; Ma S
    Environ Sci Pollut Res Int; 2022 Jan; 29(1):518-530. PubMed ID: 34331231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Composite Electrodes for Selective Removal of Sulfate by the Capacitive Deionization Process.
    Zuo K; Kim J; Jain A; Wang T; Verduzco R; Long M; Li Q
    Environ Sci Technol; 2018 Aug; 52(16):9486-9494. PubMed ID: 30041515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Faradic capacitive deionization (FCDI) for desalination and ion removal from wastewater.
    Sayed ET; Al Radi M; Ahmad A; Abdelkareem MA; Alawadhi H; Atieh MA; Olabi AG
    Chemosphere; 2021 Jul; 275():130001. PubMed ID: 33984902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced phosphorus electrosorption using Fe, N-co-doped porous electrode via capacitive deionization.
    Chen X; Song X; Chen W; Ao T
    Environ Technol; 2024 Jul; 45(17):3381-3395. PubMed ID: 37191243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Selective Recovery of Phosphorus from Wastewater via Capacitive Deionization Enabled by Ferrocene-polyaniline-Functionalized Carbon Nanotube Electrodes.
    Gao F; Li X; Shi W; Wang Z
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):31962-31972. PubMed ID: 35802538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the chemical bond on the electrosorption and desorption of anions during capacitive deionization.
    Sun Z; Li Q; Chai L; Shu Y; Wang Y; Qiu D
    Chemosphere; 2019 Aug; 229():341-348. PubMed ID: 31078891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrosorptive removal of salt ions from water by membrane capacitive deionization (MCDI): characterization, adsorption equilibrium, and kinetics.
    Li G; Cai W; Zhao R; Hao L
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):17787-17796. PubMed ID: 31030403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the electronegativity on the electrosorption selectivity of anions during capacitive deionization.
    Sun Z; Chai L; Liu M; Shu Y; Li Q; Wang Y; Qiu D
    Chemosphere; 2018 Mar; 195():282-290. PubMed ID: 29272797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equilibria model for pH variations and ion adsorption in capacitive deionization electrodes.
    Hemmatifar A; Oyarzun DI; Palko JW; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2017 Oct; 122():387-397. PubMed ID: 28622631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capacitive deionization for wastewater treatment: Opportunities and challenges.
    Kalfa A; Shapira B; Shopin A; Cohen I; Avraham E; Aurbach D
    Chemosphere; 2020 Feb; 241():125003. PubMed ID: 31590019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination.
    Liang P; Yuan L; Yang X; Zhou S; Huang X
    Water Res; 2013 May; 47(7):2523-30. PubMed ID: 23497976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Denitrification enhancement by electro-adsorption/reduction in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) with copper electrode.
    Chen L; He F; Li F
    Chemosphere; 2022 Mar; 291(Pt 1):132732. PubMed ID: 34743794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tea waste biomass activated carbon electrode for simultaneous removal of Cr(VI) and fluoride by capacitive deionization.
    Gaikwad MS; Balomajumder C
    Chemosphere; 2017 Oct; 184():1141-1149. PubMed ID: 28672695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing capacitive deionization performance with charged structural polysaccharide electrode binders.
    Kim M; Cerro MD; Hand S; Cusick RD
    Water Res; 2019 Jan; 148():388-397. PubMed ID: 30399553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.