BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

43 related articles for article (PubMed ID: 35934033)

  • 1. Sulfide-induced repartition of chromium associated with schwertmannite in acid mine drainage: Impacts and mechanisms.
    Xie Y; Ye H; Wen Z; Dang Z; Lu G
    Sci Total Environ; 2022 Nov; 848():157863. PubMed ID: 35934033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of Mn(II) on transformation of Cr-absorbed Schwertmannite: Mineral phase transition and elemental fate.
    Tang H; Chen M; Wu P; Li Y; Wang T; Wu J; Sun L; Shang Z
    Water Res; 2024 Jun; 257():121656. PubMed ID: 38677110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfate availability drives the reductive transformation of schwertmannite by co-cultured iron- and sulfate-reducing bacteria.
    Ke C; Deng Y; Zhang S; Ren M; Liu B; He J; Wu R; Dang Z; Guo C
    Sci Total Environ; 2024 Jan; 906():167690. PubMed ID: 37820819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of biochar-derived DOM on contrasting redistribution of chromate during Schwertmannite dissolution and recrystallization.
    Li X; Li T; Jeyakumar P; Li J; Bao Y; Jin X; Zhang J; Guo C; Jiang X; Lu G; Dang Z; Wang H
    J Hazard Mater; 2024 Jun; 476():134988. PubMed ID: 38908178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavior and Fate of Chromium and Carbon during Fe(II)-Induced Transformation of Ferrihydrite Organominerals.
    Zhao Y; Moore OW; Xiao KQ; Otero-Fariña A; Banwart SA; Wu FC; Peacock CL
    Environ Sci Technol; 2023 Nov; 57(45):17501-17510. PubMed ID: 37921659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The purification of acid mine drainage through the formation of schwertmannite with Fe(0) reduction and alkali-regulated biomineralization prior to lime neutralization.
    Jiang F; Lu X; Zeng L; Xue C; Yi X; Dang Z
    Sci Total Environ; 2024 Jan; 908():168291. PubMed ID: 37944602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfidation of Cd-Sch during the microbial sulfate reduction: Nanoscale redistribution of Cd.
    Deng Y; Ke C; Ren M; Xu Z; Zhang S; Dang Z; Guo C
    Sci Total Environ; 2024 Jun; 946():174275. PubMed ID: 38936727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between acid-tolerant alga Graesiella sp. MA1 and schwertmannite under long-term acidic condition.
    Liu A; Wang J; Zhou A; Yang F; Pan X; She Z; Yue Z
    Sci Total Environ; 2024 Jun; 945():174017. PubMed ID: 38897455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxyl, Fe
    Feng K; Wang X; Zhou B; Xu M; Liang J; Zhou L
    ACS Omega; 2021 Feb; 6(4):3194-3201. PubMed ID: 33553935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimony(V) behavior during the Fe(II)-induced transformation of Sb(V)-bearing natural multicomponent secondary iron mineral under acidic conditions.
    Lin W; Peng L; Li H; Xiao T; Wang J; Wang N; Zhang X; Zhang H
    Sci Total Environ; 2024 Feb; 912():169592. PubMed ID: 38154637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron colloidal transport mechanisms and sequestration of As, Ni, and Cu along AMD-induced environmental gradients.
    Fan L; Zhu T; Yang Y; Han T; Qiao Z; Huang X; Zhai W; Pan X; Zhang D
    Sci Total Environ; 2023 Nov; 898():165513. PubMed ID: 37451442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Fe(II) bio-oxidation rate and alkali control on schwertmannite microstructure and adsorption of oxyanions: Characteristics, performance and mechanism.
    Jiang F; Xue C; Zeng L; Zheng Y; Wang Y; Jin X; Yi X; Dang Z
    Sci Total Environ; 2024 Jun; 930():172844. PubMed ID: 38685420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic transformation and redistribution in groundwater induced by the complex geochemical cycling of iron and sulfur.
    Zhang Y; Xie X; Sun S; Wang Y
    Sci Total Environ; 2023 Oct; 894():164941. PubMed ID: 37343891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase transformation of schwertmannite in paddy soil under different water management regimes and its impact on the migration of arsenic in soil.
    Wang R; Zhuang J; Chen S; Li H; Wang X; Ning Z; Liu C; Zheng G; Zhou L
    Environ Pollut; 2024 Jun; 357():124452. PubMed ID: 38936036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Fe(II) concentration on the biosynthesis of schwertmannite by
    Zhang J; Zhou JX; Ji YP; Bi WL; Liu FW
    Environ Technol; 2023 Nov; 44(27):4147-4156. PubMed ID: 35634972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of chromium from Cr(III)- and Ni(II)-substituted goethite in presence of organic acids: Role of pH in the formation of colloids and complexes.
    Sun S; Deng T; Ao M; Mo Y; Li J; Liu T; Yang W; Jin C; Qiu R; Tang Y
    Sci Total Environ; 2023 Dec; 904():166979. PubMed ID: 37699483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fate of Arsenic associated with the transformation of iron oxides in soils: The mineralogical evidence.
    Gao M; Li H; Xie Z; Li Z; Luo Z; Yu R; Lü C; He J
    Sci Total Environ; 2024 Mar; 914():169795. PubMed ID: 38199364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partitioning and Mobility of Chromium in Iron-Rich Laterites from an Optimized Sequential Extraction Procedure.
    Delina REG; Perez JPH; Stammeier JA; Bazarkina EF; Benning LG
    Environ Sci Technol; 2024 Apr; 58(14):6391-6401. PubMed ID: 38551030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic redistribution associated with Fe(II)-induced jarosite transformation in the presence of polygalacturonic acid.
    Jin X; Guo C; Huang Q; Tao X; Li X; Xie Y; Dang Z; Zhou J; Lu G
    Sci Total Environ; 2024 Jul; 935():173444. PubMed ID: 38788951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of toxic metals using iron sulfide particles: A brief overview of modifications and mechanisms.
    Sharma V; Yan R; Feng X; Xu J; Pan M; Kong L; Li L
    Chemosphere; 2024 Jan; 346():140631. PubMed ID: 37939922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.