These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 359341)

  • 1. The regulation of nuclear migration and division during pseudo-mycelium outgrowth in the dimorphic yeast Candida albicans.
    Soll DR; Stasi M; Bedell G
    Exp Cell Res; 1978 Oct; 116(1):207-15. PubMed ID: 359341
    [No Abstract]   [Full Text] [Related]  

  • 2. The dependency of nuclear division on volume in the dimorphic yeast Candida albicans.
    Soll DR; Bedell G; Thiel J; Brummel M
    Exp Cell Res; 1981 May; 133(1):55-62. PubMed ID: 7016556
    [No Abstract]   [Full Text] [Related]  

  • 3. The regulation of nuclear migration and division during synchronous bud formation in released stationary phase cultures of the yeast Candida albicans.
    Bedell GW; Werth A; Soll DR
    Exp Cell Res; 1980 May; 127(1):103-13. PubMed ID: 6991260
    [No Abstract]   [Full Text] [Related]  

  • 4. Analysis of the interphase accumulation induced by hydroxyurea on proliferating plant cells.
    Navarrete MH; Pérez-Villamil B; López-Sáez JF
    Exp Cell Res; 1979 Nov; 124(1):151-7. PubMed ID: 499380
    [No Abstract]   [Full Text] [Related]  

  • 5. Cell cycle arrest during S or M phase generates polarized growth via distinct signals in Candida albicans.
    Bachewich C; Nantel A; Whiteway M
    Mol Microbiol; 2005 Aug; 57(4):942-59. PubMed ID: 16091036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical DNA damage and mammalian cell reproduction.
    Burki HJ
    J Mol Biol; 1976 May; 103(3):599-610. PubMed ID: 940157
    [No Abstract]   [Full Text] [Related]  

  • 7. Cytological interrelationships between the cell cycle and duplication cycle of Candida albicans.
    Gow NA; Henderson G; Gooday GW
    Microbios; 1986; 47(191):97-105. PubMed ID: 3537639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitohexose induce the yeast proliferation of Candida albicans.
    Kadowaki O; Ogasawara A; Watanabe T; Mikami T; Matsumoto T; Misawa Y; Matahira Y; Sakai K
    Biol Pharm Bull; 2007 Mar; 30(3):583-4. PubMed ID: 17329861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Farnesol-mediated inhibition of Candida albicans yeast growth and rescue by a diacylglycerol analogue.
    Uppuluri P; Mekala S; Chaffin WL
    Yeast; 2007 Aug; 24(8):681-93. PubMed ID: 17583896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional behaviour of mitochondria during cell division and germ tube formation in the dimorphic yeast Candida albicans.
    Tanaka K; Kanbe T; Kuroiwa T
    J Cell Sci; 1985 Feb; 73():207-20. PubMed ID: 3894384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 5-Azacytidine accelerates yeast-mycelium conversion in Candida albicans.
    Pancaldi S; Del Senno L; Fasulo MP; Poli F; Vannini GL
    Cell Biol Int Rep; 1988 Jan; 12(1):35-40. PubMed ID: 2456156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of volume growth during bud and mycelium formation in Candida albicans: a single cell analysis.
    Herman MA; Soll DR
    J Gen Microbiol; 1984 Sep; 130(9):2219-28. PubMed ID: 6389759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth and the inducibility of mycelium formation in Candida albicans: a single-cell analysis using a perfusion chamber.
    Soll DR; Herman MA
    J Gen Microbiol; 1983 Sep; 129(9):2809-24. PubMed ID: 6355393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth kinetics and morphology of colonies of the filamentous form of Candida albicans.
    Gow NA; Gooday GW
    J Gen Microbiol; 1982 Sep; 128(9):2187-94. PubMed ID: 6757383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The temporal regulation of protein synthesis during synchronous bud or mycelium formation in the dimorphic yeast Candida albicans.
    Brummel M; Soll DR
    Dev Biol; 1982 Jan; 89(1):211-24. PubMed ID: 7033021
    [No Abstract]   [Full Text] [Related]  

  • 16. Cytological aspects of dimorphism in Candida albicans.
    Gow NA; Gooday GW
    Crit Rev Microbiol; 1987; 15(1):73-8. PubMed ID: 3319423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between the glucose uptake system and growth cessation in Candida albicans.
    Cho T; Hagihara Y; Kaminishi H; Watanabe K
    J Med Vet Mycol; 1994 Dec; 32(6):461-6. PubMed ID: 7738728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Commitment to germ tube or bud formation during release from stationary phase in Candida albicans.
    Mitchell LH; Soll DR
    Exp Cell Res; 1979 Apr; 120(1):167-79. PubMed ID: 35359
    [No Abstract]   [Full Text] [Related]  

  • 19. Filament ring formation in the dimorphic yeast Candida albicans.
    Soll DR; Mitchell LH
    J Cell Biol; 1983 Feb; 96(2):486-93. PubMed ID: 6339518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inducibility of germ-tube formation in Candida albicans at different phases of yeast growth.
    Mattia E; Cassone A
    J Gen Microbiol; 1979 Aug; 113(2):439-42. PubMed ID: 390096
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.