BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 35934186)

  • 1. Spatial Proteomics Reveals Differences in the Cellular Architecture of Antibody-Producing CHO and Plasma Cell-Derived Cells.
    Kretz R; Walter L; Raab N; Zeh N; Gauges R; Otte K; Fischer S; Stoll D
    Mol Cell Proteomics; 2022 Oct; 21(10):100278. PubMed ID: 35934186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lessons from the Hamster: Cricetulus griseus Tissue and CHO Cell Line Proteome Comparison.
    Heffner KM; Hizal DB; Yerganian GS; Kumar A; Can Ö; O'Meally R; Cole R; Chaerkady R; Wu H; Bowen MA; Betenbaugh MJ
    J Proteome Res; 2017 Oct; 16(10):3672-3687. PubMed ID: 28876938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic differences in recombinant CHO cells producing two similar antibody fragments.
    Sommeregger W; Mayrhofer P; Steinfellner W; Reinhart D; Henry M; Clynes M; Meleady P; Kunert R
    Biotechnol Bioeng; 2016 Sep; 113(9):1902-12. PubMed ID: 26913574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative proteomics reveals cellular responses to individual mAb expression and tunicamycin in CHO cells.
    Sulaj E; Schwaigerlehner L; Sandell FL; Dohm JC; Marzban G; Kunert R
    Appl Microbiol Biotechnol; 2024 Jun; 108(1):381. PubMed ID: 38896138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enrichment of microsomes from Chinese hamster ovary cells by subcellular fractionation for its use in proteomic analysis.
    Pérez-Rodriguez S; de Jesús Ramírez-Lira M; Wulff T; Voldbor BG; Ramírez OT; Trujillo-Roldán MA; Valdez-Cruz NA
    PLoS One; 2020; 15(8):e0237930. PubMed ID: 32841274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive Glycoproteomic Analysis of Chinese Hamster Ovary Cells.
    Yang G; Hu Y; Sun S; Ouyang C; Yang W; Wang Q; Betenbaugh M; Zhang H
    Anal Chem; 2018 Dec; 90(24):14294-14302. PubMed ID: 30457839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 'Omics Revolution in CHO Biology: Roadmap to Improved CHO Productivity.
    Dahodwala H; Sharfstein ST
    Methods Mol Biol; 2017; 1603():153-168. PubMed ID: 28493129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Filter-Aided Sample Preparation (FASP) for Improved Proteome Analysis of Recombinant Chinese Hamster Ovary Cells.
    Coleman O; Henry M; Clynes M; Meleady P
    Methods Mol Biol; 2017; 1603():187-194. PubMed ID: 28493131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantitative proteomic analysis of cellular responses to high glucose media in Chinese hamster ovary cells.
    Liu Z; Dai S; Bones J; Ray S; Cha S; Karger BL; Li JJ; Wilson L; Hinckle G; Rossomando A
    Biotechnol Prog; 2015; 31(4):1026-38. PubMed ID: 25857574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nature as blueprint: Global phenotype engineering of CHO production cells based on a multi-omics comparison with plasma cells.
    Raab N; Zeh N; Kretz R; Weiß L; Stadermann A; Lindner B; Fischer S; Stoll D; Otte K
    Metab Eng; 2024 May; 83():110-122. PubMed ID: 38561148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endoplasmic reticulum-directed recombinant mRNA displays subcellular localization equal to endogenous mRNA during transient expression in CHO cells.
    Kallehauge TB; Kol S; Rørdam Andersen M; Kroun Damgaard C; Lee GM; Faustrup Kildegaard H
    Biotechnol J; 2016 Oct; 11(10):1362-1367. PubMed ID: 27624596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanded Chinese hamster organ and cell line proteomics profiling reveals tissue-specific functionalities.
    Heffner K; Hizal DB; Majewska NI; Kumar S; Dhara VG; Zhu J; Bowen M; Hatton D; Yerganian G; Yerganian A; O'Meally R; Cole R; Betenbaugh M
    Sci Rep; 2020 Sep; 10(1):15841. PubMed ID: 32985598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A global RNA-seq-driven analysis of CHO host and production cell lines reveals distinct differential expression patterns of genes contributing to recombinant antibody glycosylation.
    Könitzer JD; Müller MM; Leparc G; Pauers M; Bechmann J; Schulz P; Schaub J; Enenkel B; Hildebrandt T; Hampel M; Tolstrup AB
    Biotechnol J; 2015 Sep; 10(9):1412-23. PubMed ID: 26212696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping the molecular basis for growth related phenotypes in industrial producer CHO cell lines using differential proteomic analysis.
    Bryan L; Henry M; Kelly RM; Frye CC; Osborne MD; Clynes M; Meleady P
    BMC Biotechnol; 2021 Jul; 21(1):43. PubMed ID: 34301236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the molecular content of CHO exosomes during bioprocessing.
    Keysberg C; Hertel O; Schelletter L; Busche T; Sochart C; Kalinowski J; Hoffrogge R; Otte K; Noll T
    Appl Microbiol Biotechnol; 2021 May; 105(9):3673-3689. PubMed ID: 33937930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clonal variations in CHO IGF signaling investigated by SILAC-based phosphoproteomics and LFQ-MS.
    Schelletter L; Albaum S; Walter S; Noll T; Hoffrogge R
    Appl Microbiol Biotechnol; 2019 Oct; 103(19):8127-8143. PubMed ID: 31420692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential of emerging sub-omics technologies for CHO cell engineering.
    Jerabek T; Keysberg C; Otte K
    Biotechnol Adv; 2022 Oct; 59():107978. PubMed ID: 35569699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversity in host clone performance within a Chinese hamster ovary cell line.
    O'Callaghan PM; Berthelot ME; Young RJ; Graham JW; Racher AJ; Aldana D
    Biotechnol Prog; 2015; 31(5):1187-200. PubMed ID: 25918883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-omics profiling of CHO parental hosts reveals cell line-specific variations in bioprocessing traits.
    Lakshmanan M; Kok YJ; Lee AP; Kyriakopoulos S; Lim HL; Teo G; Poh SL; Tang WQ; Hong J; Tan AH; Bi X; Ho YS; Zhang P; Ng SK; Lee DY
    Biotechnol Bioeng; 2019 Sep; 116(9):2117-2129. PubMed ID: 31066037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of Intracellular Traffic System by Overexpression of KDEL Receptor 1 in Antibody-Producing CHO Cells.
    Samy A; Kaneyoshi K; Omasa T
    Biotechnol J; 2020 Jun; 15(6):e1900352. PubMed ID: 32073237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.