These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 35934207)

  • 41. A preliminary study of deep learning-based reconstruction specialized for denoising in high-frequency domain: usefulness in high-resolution three-dimensional magnetic resonance cisternography of the cerebellopontine angle.
    Uetani H; Nakaura T; Kitajima M; Yamashita Y; Hamasaki T; Tateishi M; Morita K; Sasao A; Oda S; Ikeda O; Yamashita Y
    Neuroradiology; 2021 Jan; 63(1):63-71. PubMed ID: 32794075
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deep learning denoising reconstruction enables faster T2-weighted FLAIR sequence acquisition with satisfactory image quality.
    Brain ME; Amukotuwa S; Bammer R
    J Med Imaging Radiat Oncol; 2024 Jun; 68(4):377-384. PubMed ID: 38577926
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Motion-robust MR imaging of the shoulder using compressed SENSE MultiVane.
    Niitsu M; Saruya S; Sakaguchi K; Watarai K; Yoneyama M; Katsumata Y; Inoue K; Kozawa E
    Eur J Radiol Open; 2022; 9():100450. PubMed ID: 36386762
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Verification of image quality improvement by deep learning reconstruction to 1.5 T MRI in T2-weighted images of the prostate gland.
    Sato Y; Ohkuma K
    Radiol Phys Technol; 2024 Sep; 17(3):756-764. PubMed ID: 38850389
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Deep learning reconstruction for turbo spin echo to prospectively accelerate ankle MRI: A multi-reader study.
    Xie Y; Li X; Hu Y; Liu C; Liang H; Nickel D; Fu C; Chen S; Tao H
    Eur J Radiol; 2024 Jun; 175():111451. PubMed ID: 38593573
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improved image quality in contrast-enhanced 3D-T1 weighted sequence by compressed sensing-based deep-learning reconstruction for the evaluation of head and neck.
    Fujima N; Nakagawa J; Ikebe Y; Kameda H; Harada T; Shimizu Y; Tsushima N; Kano S; Homma A; Kwon J; Yoneyama M; Kudo K
    Magn Reson Imaging; 2024 May; 108():111-115. PubMed ID: 38340971
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Clinical efficacy of motion-insensitive imaging technique with deep learning reconstruction to improve image quality in cervical spine MR imaging.
    Song YS; Lee IS; Hwang M; Jang K; Wang X; Fung M
    Br J Radiol; 2024 Mar; 97(1156):812-819. PubMed ID: 38366622
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deep learning-based reconstruction can improve canine thoracolumbar magnetic resonance image quality and reduce slice thickness.
    Kang H; Noh D; Lee SK; Choi S; Lee K
    Vet Radiol Ultrasound; 2023 Nov; 64(6):1063-1070. PubMed ID: 37667979
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deep learning-based reconstruction for 3-dimensional heavily T2-weighted fat-saturated magnetic resonance (MR) myelography in epidural fluid detection: image quality and diagnostic performance.
    Kim M; Yi J; Lee HJ; Hahn S; Lee Y; Lee J
    Quant Imaging Med Surg; 2024 Sep; 14(9):6531-6542. PubMed ID: 39281122
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Commercially Available Deep-learning-reconstruction of MR Imaging of the Knee at 1.5T Has Higher Image Quality Than Conventionally-reconstructed Imaging at 3T: A Normal Volunteer Study.
    Akai H; Yasaka K; Sugawara H; Tajima T; Akahane M; Yoshioka N; Ohtomo K; Abe O; Kiryu S
    Magn Reson Med Sci; 2023 Jul; 22(3):353-360. PubMed ID: 35811127
    [TBL] [Abstract][Full Text] [Related]  

  • 51. LAVA HyperSense and deep-learning reconstruction for near-isotropic (3D) enhanced magnetic resonance enterography in patients with Crohn's disease: utility in noise reduction and image quality improvement.
    Son JH; Lee Y; Lee HJ; Lee J; Kim H; Lebel MR
    Diagn Interv Radiol; 2023 May; 29(3):437-449. PubMed ID: 37098650
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of deep learning reconstruction on abdominal CT densitometry and image quality: a systematic review and meta-analysis.
    van Stiphout JA; Driessen J; Koetzier LR; Ruules LB; Willemink MJ; Heemskerk JWT; van der Molen AJ
    Eur Radiol; 2022 May; 32(5):2921-2929. PubMed ID: 34913104
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimized 3D brachial plexus MR neurography using deep learning reconstruction.
    Sneag DB; Queler SC; Campbell G; Colucci PG; Lin J; Lin Y; Wen Y; Li Q; Tan ET
    Skeletal Radiol; 2024 Apr; 53(4):779-789. PubMed ID: 37914895
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Feasibility study of super-resolution deep learning-based reconstruction using k-space data in brain diffusion-weighted images.
    Matsuo K; Nakaura T; Morita K; Uetani H; Nagayama Y; Kidoh M; Hokamura M; Yamashita Y; Shinoda K; Ueda M; Mukasa A; Hirai T
    Neuroradiology; 2023 Nov; 65(11):1619-1629. PubMed ID: 37673835
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessment of image quality and diagnostic accuracy for cervical spondylosis using T2w-STIR sequence with a deep learning-based reconstruction approach.
    Tao Q; Wang K; Wen B; Kang Y; Dang J; Sun J; Niu X; Zhang M; Liu Z; Wang W; Zhang Y; Cheng J
    Eur Spine J; 2024 Aug; 33(8):2982-2996. PubMed ID: 39007984
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deep learning-based acceleration of Compressed Sense MR imaging of the ankle.
    Foreman SC; Neumann J; Han J; Harrasser N; Weiss K; Peeters JM; Karampinos DC; Makowski MR; Gersing AS; Woertler K
    Eur Radiol; 2022 Dec; 32(12):8376-8385. PubMed ID: 35751695
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Motion robust coronary MR angiography using zigzag centric ky-kz trajectory and high-resolution deep learning reconstruction.
    Ota H; Morita Y; Vucevic D; Higuchi S; Takagi H; Kutsuna H; Yamashita Y; Kim P; Miyazaki M
    MAGMA; 2024 Dec; 37(6):1105-1117. PubMed ID: 38916681
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prospective Comparison of Standard and Deep Learning-reconstructed Turbo Spin-Echo MRI of the Shoulder.
    Xie Y; Tao H; Li X; Hu Y; Liu C; Zhou B; Cai J; Nickel D; Fu C; Xiong B; Chen S
    Radiology; 2024 Jan; 310(1):e231405. PubMed ID: 38193842
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A deep learning-based reconstruction approach for accelerated magnetic resonance image of the knee with compressed sense: evaluation in healthy volunteers.
    Iuga AI; Rauen PS; Siedek F; Große-Hokamp N; Sonnabend K; Maintz D; Lennartz S; Bratke G
    Br J Radiol; 2023 Jun; 96(1146):20220074. PubMed ID: 37086077
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deep learning-based reconstruction may improve non-contrast cerebral CT imaging compared to other current reconstruction algorithms.
    Oostveen LJ; Meijer FJA; de Lange F; Smit EJ; Pegge SA; Steens SCA; van Amerongen MJ; Prokop M; Sechopoulos I
    Eur Radiol; 2021 Aug; 31(8):5498-5506. PubMed ID: 33693996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.