These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 35934426)
1. Fluorescence energy transfer biosensing platform based on hyperbranched rolling circle amplification and multi-site strand displacement for ultrasensitive detection of miRNA. Li H; Cai Q; Wu D; Jie G; Zhou H Anal Chim Acta; 2022 Aug; 1222():340190. PubMed ID: 35934426 [TBL] [Abstract][Full Text] [Related]
2. Hyperbranched rolling circle amplification (HRCA)-based fluorescence biosensor for ultrasensitive and specific detection of single-nucleotide polymorphism genotyping associated with the therapy of chronic hepatitis B virus infection. Li XH; Zhang XL; Wu J; Lin N; Sun WM; Chen M; Ou QS; Lin ZY Talanta; 2019 Jan; 191():277-282. PubMed ID: 30262063 [TBL] [Abstract][Full Text] [Related]
3. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification. Song H; Yang Z; Jiang M; Zhang G; Gao Y; Shen Z; Wu ZS; Lou Y Talanta; 2019 Nov; 204():29-35. PubMed ID: 31357296 [TBL] [Abstract][Full Text] [Related]
4. Rapid and ultrasensitive miRNA detection by combining endonuclease reactions in a rolling circle amplification (RCA)-based hairpin DNA fluorescent assay. Lee YJ; Jeong JY; Do JY; Hong CA Anal Bioanal Chem; 2023 Apr; 415(10):1991-1999. PubMed ID: 36853410 [TBL] [Abstract][Full Text] [Related]
5. Highly Selective and Sensitive Electrochemiluminescence Biosensor for p53 DNA Sequence Based on Nicking Endonuclease Assisted Target Recycling and Hyperbranched Rolling Circle Amplification. Yang L; Tao Y; Yue G; Li R; Qiu B; Guo L; Lin Z; Yang HH Anal Chem; 2016 May; 88(10):5097-103. PubMed ID: 27086663 [TBL] [Abstract][Full Text] [Related]
6. Engineering a Rolling-Circle Strand Displacement Amplification Mediated Label-Free Ultrasensitive Electrochemical Biosensing Platform. Zhang XL; Liu YH; Du SM; Yin Y; Kong LQ; Chang YY; Chai YQ; Li ZH; Yuan R Anal Chem; 2021 Jul; 93(27):9568-9574. PubMed ID: 34210120 [TBL] [Abstract][Full Text] [Related]
7. Ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon mediated circular strand displacement polymerization and hyperbranched rolling circle amplification. Li X; Guo J; Zhai Q; Xia J; Yi G Anal Chim Acta; 2016 Aug; 934():52-8. PubMed ID: 27506343 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence biosensor for DNA methyltransferase activity and related inhibitor detection based on methylation-sensitive cleavage primer triggered hyperbranched rolling circle amplification. Chen L; Zhang Y; Xia Q; Luo F; Guo L; Qiu B; Lin Z Anal Chim Acta; 2020 Jul; 1122():1-8. PubMed ID: 32503739 [TBL] [Abstract][Full Text] [Related]
9. Homogeneous and label-free detection of microRNAs using bifunctional strand displacement amplification-mediated hyperbranched rolling circle amplification. Zhang LR; Zhu G; Zhang CY Anal Chem; 2014 Jul; 86(13):6703-9. PubMed ID: 24903889 [TBL] [Abstract][Full Text] [Related]
10. Ultrasensitive Fluorescence Detection and Imaging of MicroRNA in Cells Based on a Hyperbranched RCA-Assisted Multiposition SDR Signal Amplification Strategy. Yang Z; Guo Y; Zhou J; Liu F; Liang W; Chai Y; Li Z; Yuan R Anal Chem; 2022 Nov; 94(46):16237-16245. PubMed ID: 36346897 [TBL] [Abstract][Full Text] [Related]
11. Ultrasensitive assay based on a combined cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification. Xu H; Zhang Y; Zhang S; Sun M; Li W; Jiang Y; Wu ZS Anal Chim Acta; 2019 Jan; 1047():172-178. PubMed ID: 30567647 [TBL] [Abstract][Full Text] [Related]
12. Trigger-activated autonomous DNA machine for amplified liver cancer biomarker microRNA21 imaging. Su J; Wang M; Lin P; Huang Z; Li G; Chen X; Yan H; Zhou L Anal Sci; 2023 Oct; 39(10):1661-1667. PubMed ID: 37552462 [TBL] [Abstract][Full Text] [Related]
13. Fluorescence biosensor to detect microRNAs via integrating DNA hairpins transition mediated strand displacement amplification with primer exchange reaction. Liu X; Bu S; Zhou H; Xu Y; Hao Z; Li Z; Wan J Bioorg Med Chem Lett; 2024 Jul; 106():129774. PubMed ID: 38688438 [TBL] [Abstract][Full Text] [Related]
14. Engineering an endonuclease-assisted rolling circle amplification synergistically catalyzing hairpin assembly mediated fluorescence platform for miR-21 detection. Liang Z; Huang X; Tong Y; Lin X; Chen Z Talanta; 2022 Sep; 247():123568. PubMed ID: 35609481 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous detection of CaMV35S and NOS using fluorescence sensors with dual-emission silver nanoclusters and catalytic hairpin amplification strategy. Ye Y; Zhai Y; Zhang C; Li X; Wang S; Lu Y; Cao X; He S; Zheng H; Li Y; Tao Y Mikrochim Acta; 2024 Sep; 191(10):601. PubMed ID: 39283340 [TBL] [Abstract][Full Text] [Related]
16. Ultrasensitive fluorescence detection of multiple DNA methyltransferases based on DNA walkers and hyperbranched rolling circle amplification. Zhang S; Shao H; Li KB; Shi W; Wang Y; Han DM; Mo J Anal Chim Acta; 2023 Apr; 1252():341057. PubMed ID: 36935155 [TBL] [Abstract][Full Text] [Related]
17. Highly sensitive miRNA-21 detection with enzyme-free cascade amplification biosensor. Huang Q; Wang K; Wang Y Talanta; 2024 Jun; 273():125928. PubMed ID: 38508125 [TBL] [Abstract][Full Text] [Related]
18. Bidirectional motivated bimodal isothermal strand displacement amplifier with a table tennis-like movement for the ultrasensitive fluorescent and colorimetric detection of depression-related microRNA. Kong X; Wang J; Lv S; Wang C; Hong H; Xie P; Guo Y; Zhu N; Qin P; Sun Y; Xu J Anal Chim Acta; 2023 Mar; 1247():340894. PubMed ID: 36781251 [TBL] [Abstract][Full Text] [Related]
19. A fluorescent sensor based on strand displacement amplification and primer exchange reaction coupling for label-free detection of miRNA. Du Y; Qi Y; Kang Q; Yang X; Xiang H Anal Chim Acta; 2023 Oct; 1279():341780. PubMed ID: 37827678 [TBL] [Abstract][Full Text] [Related]
20. Detection of microRNAs using toehold-initiated rolling circle amplification and fluorescence resonance energy transfer. Liang K; Wang H; Li P; Zhu Y; Liu J; Tang B Talanta; 2020 Jan; 207():120285. PubMed ID: 31594625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]