These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35934462)

  • 21. Research on the co-pyrolysis of coal gangue and coffee industry residue based on machine language: Interaction, kinetics, and thermodynamics.
    Ni Z; Bi H; Jiang C; Tian J; Sun H; Zhou W; Lin Q
    Sci Total Environ; 2022 Jan; 804():150217. PubMed ID: 34520910
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On-line analysis on the interaction between organic compounds from co-pyrolysis of microalgae and low-rank coal: Thermal behavior and kinetic characteristics.
    Wu Z; Yang W; Li Y; Zhang B; Yang B
    Bioresour Technol; 2018 Nov; 268():672-676. PubMed ID: 30144741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char.
    Yuan S; Dai ZH; Zhou ZJ; Chen XL; Yu GS; Wang FC
    Bioresour Technol; 2012 Apr; 109():188-97. PubMed ID: 22305541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Co-pyrolysis behaviour and kinetic of two typical solid wastes in China and characterisation of activated carbon prepared from pyrolytic char.
    Ma Y; Niu R; Wang X; Wang Q; Wang X; Sun X
    Waste Manag Res; 2014 Nov; 32(11):1123-33. PubMed ID: 25378256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pyrolysis and combustion of industrial hemp, coal and their blends for thermal analysis by thermogravimetric analysis/Fourier transform infrared spectrometer.
    Merdun H; Yıldırım M
    Waste Manag Res; 2024 Apr; ():734242X241241604. PubMed ID: 38600728
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Release behavior and formation mechanism of polycyclic aromatic hydrocarbons during coal pyrolysis.
    Gao M; Wang Y; Dong J; Li F; Xie K
    Chemosphere; 2016 Sep; 158():1-8. PubMed ID: 27239965
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modelling of pyrolysis of coal-biomass blends using thermogravimetric analysis.
    Sadhukhan AK; Gupta P; Goyal T; Saha RK
    Bioresour Technol; 2008 Nov; 99(17):8022-6. PubMed ID: 18485697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative Analysis by Thermogravimetry-Mass Spectrum Analysis for Reactions with Evolved Gases.
    Li R; Huang Q; Wei K; Xia H
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30417884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pyrolysis characteristics, kinetics, and evolved gas determination of chrome-tanned sludge by thermogravimetry-Fourier-transform infrared spectroscopy and pyrolysis gas chromatography-mass spectrometry.
    Zhang Z; Xu G; Wang Q; Cui Z; Wang L
    Waste Manag; 2019 Jun; 93():130-137. PubMed ID: 31235049
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria.
    Hu M; Chen Z; Guo D; Liu C; Xiao B; Hu Z; Liu S
    Bioresour Technol; 2015 Feb; 177():41-50. PubMed ID: 25479392
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Active methods of mercury removal from flue gases.
    Marczak M; Budzyń S; Szczurowski J; Kogut K; Burmistrz P
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8383-8392. PubMed ID: 29572741
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physicochemical evolution during rice straw and coal co-pyrolysis and its effect on co-gasification reactivity.
    Wei J; Gong Y; Guo Q; Ding L; Wang F; Yu G
    Bioresour Technol; 2017 Mar; 227():345-352. PubMed ID: 28042990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hazardous air pollutant formation from pyrolysis of typical Chinese casting materials.
    Wang Y; Zhang Y; Su L; Li X; Duan L; Wang C; Huang T
    Environ Sci Technol; 2011 Aug; 45(15):6539-44. PubMed ID: 21714543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Co-pyrolysis mechanism of seaweed polysaccharides and cellulose based on macroscopic experiments and molecular simulations.
    Wang S; Xia Z; Hu Y; He Z; Uzoejinwa BB; Wang Q; Cao B; Xu S
    Bioresour Technol; 2017 Mar; 228():305-314. PubMed ID: 28086171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pyrolytic characteristics of fine materials from municipal solid waste using TG-FTIR, Py-GC/MS, and deep learning approach: Kinetics, thermodynamics, and gaseous products distribution.
    Lin K; Tian L; Zhao Y; Zhao C; Zhang M; Zhou T
    Chemosphere; 2022 Apr; 293():133533. PubMed ID: 34998842
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characteristics, kinetics, infrared analysis and process optimization of co-pyrolysis of waste tires and oily sludge.
    Xu G; Cai X; Wang S; Fang B; Wang H; Zhu Y
    J Environ Manage; 2022 Aug; 316():115278. PubMed ID: 35576713
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pyrolysis kinetics of coking coal mixed with biomass under non-isothermal and isothermal conditions.
    Jeong HM; Seo MW; Jeong SM; Na BK; Yoon SJ; Lee JG; Lee WJ
    Bioresour Technol; 2014 Mar; 155():442-5. PubMed ID: 24472746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study on Mercury Species in Coal and Pyrolysis-Based Mercury Removal before Utilization.
    Cao Q; Yang L; Qian Y; Liang H
    ACS Omega; 2020 Aug; 5(32):20215-20223. PubMed ID: 32832774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gas chromatographic study of the volatile products from co-pyrolysis of coal and polyethylene wastes.
    Domínguez A; Blanco CG; Barriocanal C; Alvarez R; Díez MA
    J Chromatogr A; 2001 May; 918(1):135-44. PubMed ID: 11403441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Release characteristics of mercury in chemical looping combustion of bituminous coal.
    Ji L; Wang Q; Zhang Z; Wu H; Zhou C; Yang H
    J Environ Sci (China); 2020 Aug; 94():197-203. PubMed ID: 32563484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.