These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35934462)

  • 41. Influence of coal ash on the characteristics of corn straw pyrolysis products.
    Qin Q; Zhou J; Lin B; Xie C; Zhou L
    Bioresour Technol; 2020 Dec; 318():124055. PubMed ID: 32911365
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Non-isothermal pyrolysis of de-oiled microalgal biomass: Kinetics and evolved gas analysis.
    Maurya R; Ghosh T; Saravaia H; Paliwal C; Ghosh A; Mishra S
    Bioresour Technol; 2016 Dec; 221():251-261. PubMed ID: 27643733
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS.
    Magdziarz A; Werle S
    Waste Manag; 2014 Jan; 34(1):174-9. PubMed ID: 24238993
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Release of Sulfur and Nitrogen during Co-pyrolysis of Coal and Biomass under Inert Atmosphere.
    Li L; Liu G; Li Y; Zhu Z; Xu H; Chen J; Ren X
    ACS Omega; 2020 Nov; 5(46):30001-30010. PubMed ID: 33251436
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of co-pyrolysis petrochemical wastewater sludge with lignite in a thermogravimetric analyzer and a packed-bed reactor: Pyrolysis characteristics, kinetics, and products analysis.
    Mu L; Chen J; Yao P; Zhou D; Zhao L; Yin H
    Bioresour Technol; 2016 Dec; 221():147-156. PubMed ID: 27639233
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants.
    Park SW; Jang CH
    Waste Manag; 2011 Mar; 31(3):523-9. PubMed ID: 21051215
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermal behavior and general distributed activation energy model kinetics of Lignite-Chinese herb residues blends during co-pyrolysis.
    Lin Y; Xiao H; Chen B; Ge Y; He Q; Tao S; Wang W
    Bioresour Technol; 2020 May; 304():122991. PubMed ID: 32078906
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Combustion characteristics and arsenic retention during co-combustion of agricultural biomass and bituminous coal.
    Zhou C; Liu G; Wang X; Qi C; Hu Y
    Bioresour Technol; 2016 Aug; 214():218-224. PubMed ID: 27136608
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of lignin on coal gangue pyrolysis and gas emission based on multi-lump parallel reaction model and principal component analysis.
    Bi H; Ni Z; Tian J; Jiang C; Sun H; Lin Q
    Sci Total Environ; 2022 May; 820():153083. PubMed ID: 35033567
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Co-pyrolysis characteristics of microalgae Isochrysis and Chlorella: Kinetics, biocrude yield and interaction.
    Zhao B; Wang X; Yang X
    Bioresour Technol; 2015 Dec; 198():332-9. PubMed ID: 26407347
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermogravimetric and kinetic study of Pinyon pine in the various gases.
    Kim SS; Shenoy A; Agblevor FA
    Bioresour Technol; 2014 Mar; 156():297-302. PubMed ID: 24525214
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Investigation of inorganic sulfur decomposition in a coal-like environment during pyrolysis].
    Xu L; Ni JR
    Huan Jing Ke Xue; 2005 Mar; 26(2):69-73. PubMed ID: 16004302
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Catalytic co-pyrolysis behaviors, product characteristics and kinetics of rural solid waste and chlorella vulgaris.
    Tang F; Yu Z; Li Y; Chen L; Ma X
    Bioresour Technol; 2020 Mar; 299():122636. PubMed ID: 31881438
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Co-pyrolysis behavior of microalgae biomass and low-rank coal: Kinetic analysis of the main volatile products.
    Wu Z; Li Y; Zhang B; Yang W; Yang B
    Bioresour Technol; 2019 Jan; 271():202-209. PubMed ID: 30268812
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interaction and kinetic analysis for coal and biomass co-gasification by TG-FTIR.
    Xu C; Hu S; Xiang J; Zhang L; Sun L; Shuai C; Chen Q; He L; Edreis EM
    Bioresour Technol; 2014 Feb; 154():313-21. PubMed ID: 24412857
    [TBL] [Abstract][Full Text] [Related]  

  • 56. TG-MS analysis and kinetic study for thermal decomposition of six representative components of municipal solid waste under steam atmosphere.
    Zhang J; Chen T; Wu J; Wu J
    Waste Manag; 2015 Sep; 43():152-61. PubMed ID: 26066574
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Co-pyrolysis behaviors of saw dust and Shenfu coal in drop tube furnace and fixed bed reactor.
    Li S; Chen X; Wang L; Liu A; Yu G
    Bioresour Technol; 2013 Nov; 148():24-9. PubMed ID: 24041762
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor.
    Yuan T; Tahmasebi A; Yu J
    Bioresour Technol; 2015 Jan; 175():333-41. PubMed ID: 25459840
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization.
    Tinwala F; Mohanty P; Parmar S; Patel A; Pant KK
    Bioresour Technol; 2015; 188():258-64. PubMed ID: 25770670
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular Dynamics Simulation and Gas Generation Tracking of Pyrolysis of Bituminous Coal.
    Zhang J; Wang J; Li Z; Zhu J; Lu B
    ACS Omega; 2022 Apr; 7(13):11190-11199. PubMed ID: 35415362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.