BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 35934467)

  • 1. Biochar affects methylmercury production and bioaccumulation in paddy soils: Insights from soil-derived dissolved organic matter.
    Zhang S; Wang M; Liu J; Tian S; Yang X; Xiao G; Xu G; Jiang T; Wang D
    J Environ Sci (China); 2022 Sep; 119():68-77. PubMed ID: 35934467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DOM influences Hg methylation in paddy soils across a Hg contamination gradient.
    Abdelhafiz MA; Liu J; Jiang T; Pu Q; Aslam MW; Zhang K; Meng B; Feng X
    Environ Pollut; 2023 Apr; 322():121237. PubMed ID: 36758923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury and methylmercury in Hg-contaminated paddy soil and their uptake in rice as regulated by DOM from different agricultural sources.
    Yang N; Hu J; Yin D; He T; Tian X; Ran S; Zhou X
    Environ Sci Pollut Res Int; 2023 Jul; 30(31):77181-77192. PubMed ID: 37249779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of mercury methylation in soil and methylmercury accumulation in rice by dissolved organic matter derived from sulfur-rich rape straw.
    Zheng Z; Hu J; He T; Liu C; Zhou X; Yin D
    Environ Pollut; 2024 Apr; 346():123657. PubMed ID: 38428787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of soil properties on production and bioaccumulation of methylmercury in rice paddies at a mercury mining area, China.
    Yin D; He T; Yin R; Zeng L
    J Environ Sci (China); 2018 Jun; 68():194-205. PubMed ID: 29908739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of methylmercury in paddy soil and paddy rice to pristine biochar: A meta-analysis and environmental implications.
    Tian X; Chai G; Xie Q; Li G
    Ecotoxicol Environ Saf; 2023 Jun; 257():114933. PubMed ID: 37099962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of Chitosan-modified Biochar on Formation of Methylmercury in Paddy Soils and Its Accumulation in Rice].
    Yang XL; Wang MX; Xu GM; Wang DY
    Huan Jing Ke Xue; 2021 Mar; 42(3):1191-1196. PubMed ID: 33742916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylmercury production in a paddy soil and its uptake by rice plants as affected by different geochemical mercury pools.
    Liu J; Wang J; Ning Y; Yang S; Wang P; Shaheen SM; Feng X; Rinklebe J
    Environ Int; 2019 Aug; 129():461-469. PubMed ID: 31154148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rice root exudates affect microbial methylmercury production in paddy soils.
    Zhao JY; Ye ZH; Zhong H
    Environ Pollut; 2018 Nov; 242(Pt B):1921-1929. PubMed ID: 30072222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated methylmercury production in mercury-contaminated paddy soil resulted from the favorable dissolved organic matter variation created by algal decomposition.
    Hu J; Yang N; He T; Zhou X; Yin D; Wang Y; Zhou L
    Environ Pollut; 2023 May; 324():121415. PubMed ID: 36893976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of sulfur-rich biochar amendment on microbial methylation of mercury in rhizosphere paddy soil and methylmercury accumulation in rice.
    Hu H; Xi B; Tan W
    Environ Pollut; 2021 Oct; 286():117290. PubMed ID: 33984776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic fertilizer amendment increases methylmercury accumulation in rice plants.
    Li Y; He X; Wang Y; Guan J; Guo J; Xu B; Chen YH; Wang G
    Chemosphere; 2020 Jun; 249():126166. PubMed ID: 32062560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selenium-amended biochar mitigates inorganic mercury and methylmercury accumulation in rice (Oryza sativa L.).
    Lv W; Zhan T; Abdelhafiz MA; Feng X; Meng B
    Environ Pollut; 2021 Dec; 291():118259. PubMed ID: 34600068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of sewage sludge biochar in methylmercury formation and accumulation in rice.
    Zhang J; Wu S; Xu Z; Wang M; Man YB; Christie P; Liang P; Shan S; Wong MH
    Chemosphere; 2019 Mar; 218():527-533. PubMed ID: 30500713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Farming Activities on the Biogeochemistry of Mercury in Rice-Paddy Soil Systems.
    Tang W; Su Y; Gao Y; Zhong H
    Bull Environ Contam Toxicol; 2019 May; 102(5):635-642. PubMed ID: 31053868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochar amendment reduced methylmercury accumulation in rice plants.
    Shu R; Wang Y; Zhong H
    J Hazard Mater; 2016 Aug; 313():1-8. PubMed ID: 27045620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochar and nitrate reduce risk of methylmercury in soils under straw amendment.
    Zhang Y; Liu YR; Lei P; Wang YJ; Zhong H
    Sci Total Environ; 2018 Apr; 619-620():384-390. PubMed ID: 29156259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochar-impacted sulfur cycling affects methylmercury phytoavailability in soils under different redox conditions.
    Wang Y; Zhang Y; Ok YS; Jiang T; Liu P; Shu R; Wang D; Cao X; Zhong H
    J Hazard Mater; 2021 Apr; 407():124397. PubMed ID: 33183839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selenium- and chitosan-modified biochars reduce methylmercury contents in rice seeds with recruiting Bacillus to inhibit methylmercury production.
    Guo P; Du H; Zhao W; Xiong B; Wang M; He M; Flemetakis E; Hänsch R; Ma M; Rennenberg H; Wang D
    J Hazard Mater; 2024 Mar; 465():133236. PubMed ID: 38141298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands.
    Man Y; Wang B; Wang J; Slaný M; Yan H; Li P; El-Naggar A; Shaheen SM; Rinklebe J; Feng X
    Environ Int; 2021 Aug; 153():106527. PubMed ID: 33784588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.