These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
413 related articles for article (PubMed ID: 35934714)
1. Risk score prediction model based on single nucleotide polymorphism for predicting malaria: a machine learning approach. Tai KY; Dhaliwal J; Wong K BMC Bioinformatics; 2022 Aug; 23(1):325. PubMed ID: 35934714 [TBL] [Abstract][Full Text] [Related]
2. A machine-learning approach for nonalcoholic steatohepatitis susceptibility estimation. Ghadiri F; Husseini AA; Öztaş O Indian J Gastroenterol; 2022 Oct; 41(5):475-482. PubMed ID: 36367682 [TBL] [Abstract][Full Text] [Related]
4. Assessment and quantification of ovarian reserve on the basis of machine learning models. Ding T; Ren W; Wang T; Han Y; Ma W; Wang M; Fu F; Li Y; Wang S Front Endocrinol (Lausanne); 2023; 14():1087429. PubMed ID: 37008906 [TBL] [Abstract][Full Text] [Related]
5. Machine learning approaches to predict peak demand days of cardiovascular admissions considering environmental exposure. Qiu H; Luo L; Su Z; Zhou L; Wang L; Chen Y BMC Med Inform Decis Mak; 2020 May; 20(1):83. PubMed ID: 32357880 [TBL] [Abstract][Full Text] [Related]
6. Interpretable prediction of mortality in liver transplant recipients based on machine learning. Zhang X; Gavaldà R; Baixeries J Comput Biol Med; 2022 Dec; 151(Pt A):106188. PubMed ID: 36306583 [TBL] [Abstract][Full Text] [Related]
7. Use of Multiprognostic Index Domain Scores, Clinical Data, and Machine Learning to Improve 12-Month Mortality Risk Prediction in Older Hospitalized Patients: Prospective Cohort Study. Woodman RJ; Bryant K; Sorich MJ; Pilotto A; Mangoni AA J Med Internet Res; 2021 Jun; 23(6):e26139. PubMed ID: 34152274 [TBL] [Abstract][Full Text] [Related]
8. Machine learning for identifying resistance features of Liu W; Ying N; Mo Q; Li S; Shao M; Sun L; Zhu L J Med Microbiol; 2021 Nov; 70(11):. PubMed ID: 34812714 [No Abstract] [Full Text] [Related]
9. Comparison and development of machine learning tools for the prediction of chronic obstructive pulmonary disease in the Chinese population. Ma X; Wu Y; Zhang L; Yuan W; Yan L; Fan S; Lian Y; Zhu X; Gao J; Zhao J; Zhang P; Tang H; Jia W J Transl Med; 2020 Mar; 18(1):146. PubMed ID: 32234053 [TBL] [Abstract][Full Text] [Related]
10. Machine Learning-Based Method for Obesity Risk Evaluation Using Single-Nucleotide Polymorphisms Derived from Next-Generation Sequencing. Wang HY; Chang SC; Lin WY; Chen CH; Chiang SH; Huang KY; Chu BY; Lu JJ; Lee TY J Comput Biol; 2018 Dec; 25(12):1347-1360. PubMed ID: 30204480 [TBL] [Abstract][Full Text] [Related]
11. A Weighted Genetic Risk Score Using Known Susceptibility Variants to Predict Graves Disease Risk. Ma YR; Zhao SX; Li L; Sun F; Ye XP; Yuan FF; Jiang D; Zhou Z; Zhang QY; Wan YY; Zhang GY; Wu J; Zhang RJ; Fang Y; Song HD J Clin Endocrinol Metab; 2019 Jun; 104(6):2121-2130. PubMed ID: 30649410 [TBL] [Abstract][Full Text] [Related]
12. Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: a weighted genetic risk score. De Jager PL; Chibnik LB; Cui J; Reischl J; Lehr S; Simon KC; Aubin C; Bauer D; Heubach JF; Sandbrink R; Tyblova M; Lelkova P; ; ; ; ; Havrdova E; Pohl C; Horakova D; Ascherio A; Hafler DA; Karlson EW Lancet Neurol; 2009 Dec; 8(12):1111-9. PubMed ID: 19879194 [TBL] [Abstract][Full Text] [Related]
13. Union With Recursive Feature Elimination: A Feature Selection Framework to Improve the Classification Performance of Multicategory Causes of Death in Colorectal Cancer. Deng F; Zhao L; Yu N; Lin Y; Zhang L Lab Invest; 2024 Mar; 104(3):100320. PubMed ID: 38158124 [TBL] [Abstract][Full Text] [Related]
14. Prediction of 3-year risk of diabetic kidney disease using machine learning based on electronic medical records. Dong Z; Wang Q; Ke Y; Zhang W; Hong Q; Liu C; Liu X; Yang J; Xi Y; Shi J; Zhang L; Zheng Y; Lv Q; Wang Y; Wu J; Sun X; Cai G; Qiao S; Yin C; Su S; Chen X J Transl Med; 2022 Mar; 20(1):143. PubMed ID: 35346252 [TBL] [Abstract][Full Text] [Related]
15. A comparative study of 11 non-linear regression models highlighting autoencoder, DBN, and SVR, enhanced by SHAP importance analysis in soybean branching prediction. Zhou W; Yan Z; Zhang L Sci Rep; 2024 Mar; 14(1):5905. PubMed ID: 38467662 [TBL] [Abstract][Full Text] [Related]
16. A Data-Driven Approach to Predicting Recreational Activity Participation Using Machine Learning. Lee S; Kang M Res Q Exerc Sport; 2024 Dec; 95(4):873-885. PubMed ID: 38875156 [No Abstract] [Full Text] [Related]
17. Length of Stay Prediction Model of Indoor Patients Based on Light Gradient Boosting Machine. Zeng X Comput Intell Neurosci; 2022; 2022():9517029. PubMed ID: 36082346 [TBL] [Abstract][Full Text] [Related]
18. Predicting atrial fibrillation using a combination of genetic risk score and clinical risk factors. Okubo Y; Nakano Y; Ochi H; Onohara Y; Tokuyama T; Motoda C; Amioka M; Hironobe N; Okamura S; Ikeuchi Y; Miyauchi S; Chayama K; Kihara Y Heart Rhythm; 2020 May; 17(5 Pt A):699-705. PubMed ID: 31931171 [TBL] [Abstract][Full Text] [Related]
19. Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method. Huang JC; Tsai YC; Wu PY; Lien YH; Chien CY; Kuo CF; Hung JF; Chen SC; Kuo CH Comput Methods Programs Biomed; 2020 Oct; 195():105536. PubMed ID: 32485511 [TBL] [Abstract][Full Text] [Related]
20. Prediction of lung cancer risk in Chinese population with genetic-environment factor using extreme gradient boosting. Li Y; Zou Z; Gao Z; Wang Y; Xiao M; Xu C; Jiang G; Wang H; Jin L; Wang J; Wang HZ; Guo S; Wu J Cancer Med; 2022 Dec; 11(23):4469-4478. PubMed ID: 35499292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]