BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 35935050)

  • 1. Polymeric Hydrogel Scaffolds: Skin Tissue Engineering and Regeneration.
    Uppuluri VNVA; Thukani Sathanantham S; Bhimavarapu SK; Elumalai L
    Adv Pharm Bull; 2022 May; 12(3):437-448. PubMed ID: 35935050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymeric Gel Scaffolds and Biomimetic Environments for Wound Healing.
    Alka ; Verma A; Mishra N; Singh N; Singh P; Nisha R; Pal RR; Saraf SA
    Curr Pharm Des; 2023; 29(40):3221-3239. PubMed ID: 37584354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Icariin-Loaded Polyvinyl Alcohol/Agar Hydrogel: Development, Characterization, and In Vivo Evaluation in a Full-Thickness Burn Model.
    Uppuluri VNVA; Shanmugarajan TS
    Int J Low Extrem Wounds; 2019 Sep; 18(3):323-335. PubMed ID: 31140339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues.
    Manoukian OS; Matta R; Letendre J; Collins P; Mazzocca AD; Kumbar SG
    Methods Mol Biol; 2017; 1570():261-278. PubMed ID: 28238143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.
    Naahidi S; Jafari M; Logan M; Wang Y; Yuan Y; Bae H; Dixon B; Chen P
    Biotechnol Adv; 2017 Sep; 35(5):530-544. PubMed ID: 28558979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitin scaffolds in tissue engineering.
    Jayakumar R; Chennazhi KP; Srinivasan S; Nair SV; Furuike T; Tamura H
    Int J Mol Sci; 2011; 12(3):1876-87. PubMed ID: 21673928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering 3D-printed core-shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration.
    El-Habashy SE; El-Kamel AH; Essawy MM; Abdelfattah EA; Eltaher HM
    Biomater Sci; 2021 Jun; 9(11):4019-4039. PubMed ID: 33899858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
    Wu S; Duan B; Qin X; Butcher JT
    Acta Biomater; 2017 Mar; 51():89-100. PubMed ID: 28110071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic Self-Assembling Peptide Hydrogels for Tissue Engineering Applications.
    Lu J; Wang X
    Adv Exp Med Biol; 2018; 1064():297-312. PubMed ID: 30471040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymeric Nanocomposite Hydrogel Scaffolds in Craniofacial Bone Regeneration: A Comprehensive Review.
    Bashir MH; Korany NS; Farag DBE; Abbass MMS; Ezzat BA; Hegazy RH; Dörfer CE; Fawzy El-Sayed KM
    Biomolecules; 2023 Jan; 13(2):. PubMed ID: 36830575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and evaluation of injectable thermosensitive penta-block copolymer hydrogel (PNIPAAm-PCL-PEG-PCL-PNIPAAm) and star-shaped poly(CL─CO─LA)-b-PEG for wound healing applications.
    Oroojalian F; Jahanafrooz Z; Chogan F; Rezayan AH; Malekzade E; Rezaei SJT; Nabid MR; Sahebkar A
    J Cell Biochem; 2019 Oct; 120(10):17194-17207. PubMed ID: 31104319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactive antibacterial silica-based nanocomposites hydrogel scaffolds with high angiogenesis for promoting diabetic wound healing and skin repair.
    Li Y; Xu T; Tu Z; Dai W; Xue Y; Tang C; Gao W; Mao C; Lei B; Lin C
    Theranostics; 2020; 10(11):4929-4943. PubMed ID: 32308759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melt-electrowriting with novel milk protein/PCL biomaterials for skin regeneration.
    Hewitt E; Mros S; McConnell M; Cabral JD; Ali A
    Biomed Mater; 2019 Aug; 14(5):055013. PubMed ID: 31318339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moist-Retaining, Self-Recoverable, Bioadhesive, and Transparent in Situ Forming Hydrogels To Accelerate Wound Healing.
    Li J; Yu F; Chen G; Liu J; Li XL; Cheng B; Mo XM; Chen C; Pan JF
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2023-2038. PubMed ID: 31895528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D hydrogel/ bioactive glass scaffolds in bone tissue engineering: Status and future opportunities.
    Aldhaher A; Shahabipour F; Shaito A; Al-Assaf S; Elnour AAM; Sallam EB; Teimourtash S; Elfadil AA
    Heliyon; 2023 Jul; 9(7):e17050. PubMed ID: 37483767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
    Sahai N; Gogoi M; Tewari RP
    Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.
    Vedadghavami A; Minooei F; Mohammadi MH; Khetani S; Rezaei Kolahchi A; Mashayekhan S; Sanati-Nezhad A
    Acta Biomater; 2017 Oct; 62():42-63. PubMed ID: 28736220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic hydrogel loaded with silk and l-proline for tissue engineering and wound healing applications.
    Thangavel P; Ramachandran B; Kannan R; Muthuvijayan V
    J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1401-1408. PubMed ID: 27080564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Challenges and Prospective Applications of Three-Dimensional Bioactive Polymeric Hydrogels in Oral and Craniofacial Tissue Engineering: A Narrative Review.
    Atia GAN; Shalaby HK; Ali NG; Morsy SM; Ghobashy MM; Attia HAN; Barai P; Nady N; Kodous AS; Barai HR
    Pharmaceuticals (Basel); 2023 May; 16(5):. PubMed ID: 37242485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.