These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35935199)

  • 1. Electrochemical impedance spectroscopy applied to microbial fuel cells: A review.
    Wang H; Long X; Sun Y; Wang D; Wang Z; Meng H; Jiang C; Dong W; Lu N
    Front Microbiol; 2022; 13():973501. PubMed ID: 35935199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.
    Ramasamy RP; Ren Z; Mench MM; Regan JM
    Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell.
    Manohar AK; Bretschger O; Nealson KH; Mansfeld F
    Bioelectrochemistry; 2008 Apr; 72(2):149-54. PubMed ID: 18294928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impedance spectroscopy as a tool for non-intrusive detection of extracellular mediators in microbial fuel cells.
    Ramasamy RP; Gadhamshetty V; Nadeau LJ; Johnson GR
    Biotechnol Bioeng; 2009 Dec; 104(5):882-91. PubMed ID: 19585525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The accurate use of impedance analysis for the study of microbial electrochemical systems.
    Dominguez-Benetton X; Sevda S; Vanbroekhoven K; Pant D
    Chem Soc Rev; 2012 Nov; 41(21):7228-46. PubMed ID: 22885371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of anode and anolyte community growth and the impact of impedance in a microbial fuel cell.
    Sanchez-Herrera D; Pacheco-Catalan D; Valdez-Ojeda R; Canto-Canche B; Dominguez-Benetton X; Domínguez-Maldonado J; Alzate-Gaviria L
    BMC Biotechnol; 2014 Dec; 14():102. PubMed ID: 25487741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy of electrode position in microbial fuel cell for simultaneous Cr(VI) reduction and bioelectricity production.
    Zhou J; Li M; Zhou W; Hu J; Long Y; Tsang YF; Zhou S
    Sci Total Environ; 2020 Dec; 748():141425. PubMed ID: 32798878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of nickel-based layered double hydroxide (LDH) and their adsorption on carbon felt fibres: application as low cost cathode catalyst in microbial fuel cell (MFC).
    Djellali M; Kameche M; Kebaili H; Bouhent MM; Benhamou A
    Environ Technol; 2021 Jan; 42(3):492-504. PubMed ID: 31223060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation.
    Merino-Jimenez I; Gonzalez-Juarez F; Greenman J; Ieropoulos I
    J Power Sources; 2019 Jul; 429():30-37. PubMed ID: 31379405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mill effluent.
    Baranitharan E; Khan MR; Prasad DM; Teo WF; Tan GY; Jose R
    Bioprocess Biosyst Eng; 2015 Jan; 38(1):15-24. PubMed ID: 24981021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive impedance journey to continuous microbial fuel cells.
    Sevda S; Chayambuka K; Sreekrishnan TR; Pant D; Dominguez-Benetton X
    Bioelectrochemistry; 2015 Dec; 106(Pt A):159-66. PubMed ID: 25921205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of Polymer Biofilm Formation on Titanium-Based Anode Surface in Microbial Fuel Cells with Poplar Substrate.
    Erensoy A; Çek N
    Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34205984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of the electron transfer and ion transport phenomena in microbial fuel cells containing humic acid-modified bioanodes.
    Gonzalez-Nava C; Manríquez J; Godínez LA; Rodríguez-Valadez FJ
    Bioelectrochemistry; 2022 Apr; 144():108003. PubMed ID: 34906820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term operation of bio-catalyzed cathodes within continuous flow membrane-less microbial fuel cells.
    Chang CC; Li SL; Hu A; Yu CP
    Chemosphere; 2021 Mar; 266():129059. PubMed ID: 33250234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of carbon felt anodes using double-oxidant HNO
    Zhao Y; Ma Y; Li T; Dong Z; Wang Y
    RSC Adv; 2018 Jan; 8(4):2059-2064. PubMed ID: 35542616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological capacitance studies of anodes in microbial fuel cells using electrochemical impedance spectroscopy.
    Lu Z; Girguis P; Liang P; Shi H; Huang G; Cai L; Zhang L
    Bioprocess Biosyst Eng; 2015 Jul; 38(7):1325-33. PubMed ID: 25656699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ electrochemical impedance analysis of a commercial SOFC stack fueled by real wood gas.
    Torrigino F; Grimm F; Karl J; Herkendell K
    Heliyon; 2024 Jun; 10(12):e32509. PubMed ID: 38952384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkaline treatment of used carbon-brush anodes for restoring power generation of microbial fuel cells.
    Li L; Jiang B; Tang D; Zhang X; Yuan K; Zhang Q
    RSC Adv; 2018 Oct; 8(64):36754-36760. PubMed ID: 35558927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial fuel cell soft sensor for real-time toxicity detection and monitoring.
    Adekunle A; Gomez Vidales A; Woodward L; Tartakovsky B
    Environ Sci Pollut Res Int; 2021 Mar; 28(10):12792-12802. PubMed ID: 33089465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy.
    Borole AP; Aaron D; Hamilton CY; Tsouris C
    Environ Sci Technol; 2010 Apr; 44(7):2740-5. PubMed ID: 20222678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.