BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35935287)

  • 1. Assessment of the Enrichment of Heavy Metals in Coal and Its Combustion Residues.
    Altıkulaç A; Turhan Ş; Kurnaz A; Gören E; Duran C; Hançerlioğulları A; Uğur FA
    ACS Omega; 2022 Jun; 7(24):21239-21245. PubMed ID: 35935287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potentially toxic elements in lignite and its combustion residues from a power plant.
    Ram LC; Masto RE; Srivastava NK; George J; Selvi VA; Das TB; Pal SK; Maity S; Mohanty D
    Environ Monit Assess; 2015 Jan; 187(1):4148. PubMed ID: 25446718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enrichment of naturally occurring radionuclides and trace elements in Yatagan and Yenikoy coal-fired thermal power plants, Turkey.
    Ozden B; Guler E; Vaasma T; Horvath M; Kiisk M; Kovacs T
    J Environ Radioact; 2018 Aug; 188():100-107. PubMed ID: 28965987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ²²⁶Ra, ²³²Th and ⁴⁰K radionuclides enhancement rate and dose assessment for residues of lignite-fired thermal power plants in Turkey.
    Parmaksiz A; Arikan P; Vural M; Yeltepe E; Tükenmez I
    Radiat Prot Dosimetry; 2011 Nov; 147(4):548-54. PubMed ID: 21217134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metal contamination in soils around the Tunçbilek Thermal Power Plant (Kütahya, Turkey).
    Özkul C
    Environ Monit Assess; 2016 May; 188(5):284. PubMed ID: 27071662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metal accumulation in agricultural soils around a coal fired thermal power plant (Farakka) in India.
    Sengupta S; Chatterjee T; Ghosh PB; Saha T
    J Environ Sci Eng; 2010 Oct; 52(4):299-306. PubMed ID: 22312798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion.
    Reddy MS; Basha S; Joshi HV; Jha B
    J Hazard Mater; 2005 Aug; 123(1-3):242-9. PubMed ID: 15916850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior study of trace elements in pulverized lignite, bottom ash, and fly ash of Amyntaio power station, Greece.
    Megalovasilis P; Papastergios G; Filippidis A
    Environ Monit Assess; 2013 Jul; 185(7):6071-6. PubMed ID: 23188071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area.
    Singh R; Singh DP; Kumar N; Bhargava SK; Barman SC
    J Environ Biol; 2010 Jul; 31(4):421-30. PubMed ID: 21186714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of trace elements and potential environmental risks of the ash from agricultural straw direct combustion biomass power plant.
    Xu S; Zhou C; Fang H; Zhu W; Shi J; Liu G
    Chemosphere; 2023 Aug; 333():138989. PubMed ID: 37209844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash.
    Nguyen TC; Loganathan P; Nguyen TV; Kandasamy J; Naidu R; Vigneswaran S
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20430-20438. PubMed ID: 28707235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanochemical stabilization of heavy metals in fly ash from coal-fired power plants via dry milling and wet milling.
    Yuan Q; Zhang Y; Wang T; Wang J; Romero CE
    Waste Manag; 2021 Nov; 135():428-436. PubMed ID: 34619624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo.
    Hasani F; Shala F; Xhixha G; Xhixha MK; Hodolli G; Kadiri S; Bylyku E; Cfarku F
    J Environ Radioact; 2014 Dec; 138():156-61. PubMed ID: 25233215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical study on distribution of multiple dissolved elements and a water quality assessment around a simulated stackable fly ash.
    Wang J
    Ecotoxicol Environ Saf; 2018 Sep; 159():46-55. PubMed ID: 29730408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elemental characterization of coal, fly ash, and bottom ash using an energy dispersive X-ray fluorescence technique.
    Tiwari M; Sahu SK; Bhangare RC; Ajmal PY; Pandit GG
    Appl Radiat Isot; 2014 Aug; 90():53-7. PubMed ID: 24685495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of sulphur compounds on the volatile characteristics of heavy metals in fly ash from the MSW and sewage sludge co-combustion plant during the disposal process with higher temperature].
    Liu JY; Sun SY
    Huan Jing Ke Xue; 2012 Nov; 33(11):3990-8. PubMed ID: 23323436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residual and ecological risk assessment of heavy metals in fly ash from co-combustion of excess sludge and coal.
    Tang Y; Pan J; Li B; Zhao S; Zhang L
    Sci Rep; 2021 Jan; 11(1):2499. PubMed ID: 33510233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geochemical properties of topsoil around the coal mine and thermoelectric power plant.
    Stafilov T; Šajn R; Arapčeska M; Kungulovski I; Alijagić J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Jul; 53(9):793-808. PubMed ID: 29553910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review on fly ash from coal-fired power plants: chemical composition, regulations, and health evidence.
    Zierold KM; Odoh C
    Rev Environ Health; 2020 Nov; 35(4):401-418. PubMed ID: 32324165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of leachant temperature and pH on leachability of metals from fly ash. A case study: Can thermal power plant, province of Canakkale, Turkey.
    Baba A; Gurdal G; Sengunalp F; Ozay O
    Environ Monit Assess; 2008 Apr; 139(1-3):287-98. PubMed ID: 17588209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.