These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35936018)

  • 1. Adaptive Bayesian Spectral Analysis of High-dimensional Nonstationary Time Series.
    Li Z; Rosen O; Ferrarelli F; Krafty RT
    J Comput Graph Stat; 2021; 30(3):794-807. PubMed ID: 35936018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive Bayesian Time-Frequency Analysis of Multivariate Time Series.
    Li Z; Krafty R
    J Am Stat Assoc; 2019; 114(525):453-465. PubMed ID: 31156284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditional adaptive Bayesian spectral analysis of nonstationary biomedical time series.
    Bruce SA; Hall MH; Buysse DJ; Krafty RT
    Biometrics; 2018 Mar; 74(1):260-269. PubMed ID: 28482111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conditional adaptive Bayesian spectral analysis of replicated multivariate time series.
    Li Z; Bruce SA; Wutzke CJ; Long Y
    Stat Med; 2021 Apr; 40(8):1989-2005. PubMed ID: 33474728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sparse Bayesian infinite factor models.
    Bhattacharya A; Dunson DB
    Biometrika; 2011 Jun; 98(2):291-306. PubMed ID: 23049129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AdaptSPEC-X: Covariate-Dependent Spectral Modeling of Multiple Nonstationary Time Series.
    Bertolacci M; Rosen O; Cripps E; Cripps S
    J Comput Graph Stat; 2022; 31(2):436-454. PubMed ID: 36329784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ANOPOW FOR REPLICATED NONSTATIONARY TIME SERIES IN EXPERIMENTS.
    Li Z; Yue YR; Bruce SA
    Ann Appl Stat; 2024 Mar; 18(1):328-349. PubMed ID: 38435672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive Bayesian sum of trees model for covariate-dependent spectral analysis.
    Wang Y; Li Z; Bruce SA
    Biometrics; 2023 Sep; 79(3):1826-1839. PubMed ID: 36124411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abrupt motion tracking via intensively adaptive Markov-chain Monte Carlo sampling.
    Zhou X; Lu Y; Lu J; Zhou J
    IEEE Trans Image Process; 2012 Feb; 21(2):789-801. PubMed ID: 21937350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conditional Spectral Analysis of Replicated Multiple Time Series with Application to Nocturnal Physiology.
    Krafty RT; Rosen O; Stoffer DS; Buysse DJ; Hall MH
    J Am Stat Assoc; 2017; 112(520):1405-1416. PubMed ID: 29430069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locally Adaptive Smoothing with Markov Random Fields and Shrinkage Priors.
    Faulkner JR; Minin VN
    Bayesian Anal; 2018 Mar; 13(1):225-252. PubMed ID: 29755638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geodesic Lagrangian Monte Carlo over the space of positive definite matrices: with application to Bayesian spectral density estimation.
    Holbrook A; Lan S; Vandenberg-Rodes A; Shahbaba B
    J Stat Comput Simul; 2018; 88(5):982-1002. PubMed ID: 31105358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating graph information in Bayesian factor analysis with robust and adaptive shrinkage priors.
    Zhang Q; Chang C; Shen L; Long Q
    Biometrics; 2024 Jan; 80(1):. PubMed ID: 38281768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian Model Search for Nonstationary Periodic Time Series.
    Hadj-Amar B; Rand BF; Fiecas M; Lévi F; Huckstepp R
    J Am Stat Assoc; 2019 Jul; 115(531):1320-1335. PubMed ID: 33814652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies.
    Bustad A; Terziivanov D; Leary R; Port R; Schumitzky A; Jelliffe R
    Clin Pharmacokinet; 2006; 45(4):365-83. PubMed ID: 16584284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shrinkage with shrunken shoulders: Gibbs sampling shrinkage model posteriors with guaranteed convergence rates.
    Nishimura A; Suchard MA
    Bayesian Anal; 2023 Jun; 18(2):367-390. PubMed ID: 38770434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonparametric modeling of neural point processes via stochastic gradient boosting regression.
    Truccolo W; Donoghue JP
    Neural Comput; 2007 Mar; 19(3):672-705. PubMed ID: 17298229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized cumulative shrinkage process priors with applications to sparse Bayesian factor analysis.
    Frühwirth-Schnatter S
    Philos Trans A Math Phys Eng Sci; 2023 May; 381(2247):20220148. PubMed ID: 36970824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonparametric Bayesian Segmentation of a Multivariate Inhomogeneous Space-Time Poisson Process.
    Ding M; He L; Dunson D; Carin L
    Bayesian Anal; 2012 Dec; 7(4):813-840. PubMed ID: 23741284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian cumulative shrinkage for infinite factorizations.
    Legramanti S; Durante D; Dunson DB
    Biometrika; 2020 Sep; 107(3):745-752. PubMed ID: 32831355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.