BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 35936097)

  • 1. Fundamentals and applications of metal nanoparticle- enhanced singlet oxygen generation for improved cancer photodynamic therapy.
    George BP; Chota A; Sarbadhikary P; Abrahamse H
    Front Chem; 2022; 10():964674. PubMed ID: 35936097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon-Enhanced Photodynamic Cancer Therapy by Upconversion Nanoparticles Conjugated with Au Nanorods.
    Chen CW; Chan YC; Hsiao M; Liu RS
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32108-32119. PubMed ID: 27933825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-Accelerated Generation of Singlet Oxygen on an Au/MoS
    Younis MR; An R; Wang Y; He G; Gurram B; Wang S; Lin J; Ye D; Huang P; Xia XH
    ACS Appl Bio Mater; 2022 Feb; 5(2):747-760. PubMed ID: 35040617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Nanoparticle-based Hybrid Photosensitizers with Broadened Excitation Profile for Photodynamic Therapy of Cancer Cells.
    Wang P; Tang H; Zhang P
    Sci Rep; 2016 Oct; 6():34981. PubMed ID: 27725746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging Strategies in Enhancing Singlet Oxygen Generation of Nano-Photosensitizers Toward Advanced Phototherapy.
    Tavakkoli Yaraki M; Liu B; Tan YN
    Nanomicro Lett; 2022 May; 14(1):123. PubMed ID: 35513555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying high performance gold nanoshells for singlet oxygen generation enhancement.
    Farooq S; de Araujo RE
    Photodiagnosis Photodyn Ther; 2021 Sep; 35():102466. PubMed ID: 34343668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of various nanoparticles in photodynamic therapy and detection methods of singlet oxygen.
    Krajczewski J; Rucińska K; Townley HE; Kudelski A
    Photodiagnosis Photodyn Ther; 2019 Jun; 26():162-178. PubMed ID: 30914390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-shell polymeric nanoparticles co-loaded with photosensitizer and organic dye for photodynamic therapy guided by fluorescence imaging in near and short-wave infrared spectral regions.
    Chepurna OM; Yakovliev A; Ziniuk R; Nikolaeva OA; Levchenko SM; Xu H; Losytskyy MY; Bricks JL; Slominskii YL; Vretik LO; Qu J; Ohulchanskyy TY
    J Nanobiotechnology; 2020 Jan; 18(1):19. PubMed ID: 31973717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AIE material for photodynamic therapy.
    Saini V; Venkatesh V
    Prog Mol Biol Transl Sci; 2021; 185():45-73. PubMed ID: 34782107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can nanotechnology potentiate photodynamic therapy?
    Huang YY; Sharma SK; Dai T; Chung H; Yaroslavsky A; Garcia-Diaz M; Chang J; Chiang LY; Hamblin MR
    Nanotechnol Rev; 2012 Mar; 1(2):111-146. PubMed ID: 26361572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-enhanced nano-photosensitizers: game-changers in photodynamic therapy of cancers.
    Amirjani A; Shokrani P; Sharif SA; Moheb H; Ahmadi H; Ahmadiani ZS; Paroushi MS
    J Mater Chem B; 2023 Apr; 11(16):3537-3566. PubMed ID: 37000577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fullerene based hybrid nanoparticle facilitates enhanced photodynamic therapy via changing light source and oxygen consumption.
    Yan Y; Zhang K; Wang H; Liu W; Zhang Z; Liu J; Shi J
    Colloids Surf B Biointerfaces; 2020 Feb; 186():110700. PubMed ID: 31821968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress of Nanomaterials in Photodynamic Therapy Against Tumor.
    Chen L; Huang J; Li X; Huang M; Zeng S; Zheng J; Peng S; Li S
    Front Bioeng Biotechnol; 2022; 10():920162. PubMed ID: 35711646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water soluble, multifunctional antibody-porphyrin gold nanoparticles for targeted photodynamic therapy.
    Penon O; Marín MJ; Russell DA; Pérez-García L
    J Colloid Interface Sci; 2017 Jun; 496():100-110. PubMed ID: 28214620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in near infrared upconverting nanomaterials for targeted photodynamic therapy of cancer.
    Del Valle CA; Hirsch T; Marín MJ
    Methods Appl Fluoresc; 2022 May; 10(3):. PubMed ID: 35447614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers.
    Idris NM; Gnanasammandhan MK; Zhang J; Ho PC; Mahendran R; Zhang Y
    Nat Med; 2012 Oct; 18(10):1580-5. PubMed ID: 22983397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanorod enhanced conjugated polymer/photosensitizer composite nanoparticles for simultaneous two-photon excitation fluorescence imaging and photodynamic therapy.
    Li S; Shen X; Xu QH; Cao Y
    Nanoscale; 2019 Nov; 11(41):19551-19560. PubMed ID: 31578535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-photon excitation nanoparticles for photodynamic therapy.
    Shen Y; Shuhendler AJ; Ye D; Xu JJ; Chen HY
    Chem Soc Rev; 2016 Dec; 45(24):6725-6741. PubMed ID: 27711672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable oxygen-producing manganese-chelated metal organic frameworks for tumor-targeted synergistic chemo/photothermal/ photodynamic therapy.
    Feng L; Chen M; Li R; Zhou L; Wang C; Ye P; Hu X; Yang J; Sun Y; Zhu Z; Fang K; Chai K; Shi S; Dong C
    Acta Biomater; 2022 Jan; 138():463-477. PubMed ID: 34718179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy.
    Chen NT; Tang KC; Chung MF; Cheng SH; Huang CM; Chu CH; Chou PT; Souris JS; Chen CT; Mou CY; Lo LW
    Theranostics; 2014; 4(8):798-807. PubMed ID: 24955141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.