These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35936420)

  • 1. Analysis of Pyrolysis Characteristics of Oily Sludge in Different Regions and Environmental Risk Assessment of Heavy Metals in Pyrolysis Residue.
    Wang L; Xu Y; Zhao Z; Zhang D; Lin X; Ma B; Zhang H
    ACS Omega; 2022 Aug; 7(30):26265-26274. PubMed ID: 35936420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of heavy metal migration during pyrolysis of typical oily wastes and environmental risk assessment of pyrolysis residues.
    Wang L; Tu H; Zhang H; Liang L; Jiang H; Wang D; Yan X; Xu Y
    Waste Manag; 2024 Jun; 183():174-183. PubMed ID: 38759275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A critical review on energy recovery and non-hazardous disposal of oily sludge from petroleum industry by pyrolysis.
    Li J; Lin F; Li K; Zheng F; Yan B; Che L; Tian W; Chen G; Yoshikawa K
    J Hazard Mater; 2021 Mar; 406():124706. PubMed ID: 33418275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave pyrolysis of oily sludge with activated carbon.
    Chen YR
    Environ Technol; 2016 Dec; 37(24):3139-45. PubMed ID: 27133358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Products distribution and hazardous elements migration during pyrolysis of oily sludge from the oil refining process.
    Wan G; Bei L; Yu J; Xu L; Sun L
    Chemosphere; 2022 Feb; 288(Pt 1):132524. PubMed ID: 34637869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-pyrolysis of sewage sludge and metal-free/metal-loaded polyvinyl chloride (PVC) microplastics improved biochar properties and reduced environmental risk of heavy metals.
    Li W; Meng J; Zhang Y; Haider G; Ge T; Zhang H; Li Z; Yu Y; Shan S
    Environ Pollut; 2022 Jun; 302():119092. PubMed ID: 35245620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy recoveries and heavy metal migration behaviors of different oily sludges treated by pyrolysis versus solvent extraction.
    Wang Z; Yuan M; Wang J
    J Hazard Mater; 2024 Aug; 475():134892. PubMed ID: 38876024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave pyrolysis of oily sludge under different control modes.
    Liu Y; Yu H; Jiang Z; Song Y; Zhang T; Siyal AA; Dai J; Bi X; Fu J; Ao W; Zhou C; Wang L; Li X; Jin X; Teng D; Fang J
    J Hazard Mater; 2021 Aug; 416():125887. PubMed ID: 34492825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-pyrolysis of metal contaminated oily waste for oil recovery and heavy metal immobilization.
    Tian Y; Li J; Yan X; Whitcombe T; Thring R
    J Hazard Mater; 2019 Jul; 373():1-10. PubMed ID: 30901680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis.
    Liu T; Liu Z; Zheng Q; Lang Q; Xia Y; Peng N; Gai C
    Bioresour Technol; 2018 Jan; 247():282-290. PubMed ID: 28950137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of H
    Yu D; Li Z; Li J; He J; Li B; Wang Y
    J Hazard Mater; 2024 Jan; 462():132618. PubMed ID: 37820526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of corn straw on distribution and migration of nitrogen and heavy metals during microwave-assisted pyrolysis of municipal sewage sludge.
    Zhang Y; Zhou C; Deng Z; Li X; Liu Y; Qu J; Li X; Wang L; Dai J; Fu J; Zhang C; Yu M; Yu H
    Sci Total Environ; 2022 Apr; 815():152303. PubMed ID: 34896502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Investigation into the Effect of Pyrolysis on Chemical Forms of Heavy Metals in Sewage Sludge Biochar (SSB), with Brief Ecological Risk Assessment.
    Li B; Ding S; Fan H; Ren Y
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33477642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Treatment of Oily Sludge via Fast Microwave-Assisted Pyrolysis, Followed by Thermal Plasma Vitrification.
    Xie Q; Chen Z; Zhou Y; Pan T; Duan Y; Yu S; Liang X; Wu Z; Ji W; Nie Y
    Molecules; 2023 May; 28(10):. PubMed ID: 37241776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolysis Behaviors and Residue Properties of Iron-Rich Rolling Sludge from Steel Smelting.
    Ye H; Li Q; Yu H; Xiang L; Wei J; Lin F
    Int J Environ Res Public Health; 2022 Feb; 19(4):. PubMed ID: 35206336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of additives on the distribution of three-phase products of oily sludge subjected to microwave pyrolysis.
    Song Z; Xu B; Xu C; Yu J; Su Y; Zhao X; Sun J; Mao Y; Wang W
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(13):1445-1455. PubMed ID: 34955077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining impregnation and co-pyrolysis to reduce the environmental risk of biochar derived from sewage sludge.
    Min X; Ge T; Li H; Shi Y; Fang T; Sheng B; Li H; Dong X
    Chemosphere; 2022 Mar; 290():133371. PubMed ID: 34952014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hazardous elements flow during pyrolysis of oily sludge.
    Li J; Lin F; Xiang L; Zheng F; Che L; Tian W; Guo X; Yan B; Song Y; Chen G
    J Hazard Mater; 2021 May; 409():124986. PubMed ID: 33388449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of heavy metals and oil components in the products of oily sludge after hydrothermal treatment.
    Duan Y; Gao N; Sipra AT; Tong K; Quan C
    J Hazard Mater; 2022 Feb; 424(Pt A):127293. PubMed ID: 34600372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor.
    Qin L; Han J; He X; Zhan Y; Yu F
    J Environ Manage; 2015 May; 154():177-82. PubMed ID: 25728916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.