These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35936420)

  • 21. Oil-based drilling cuttings pyrolysis residues at a typical shale gas drilling field in Chongqing: pollution characteristics and environmental risk assessment.
    Chen X; Yang Y; Lu Z; Chen K; Li Y; Huang X; Wang X
    Environ Geochem Health; 2023 Jun; 45(6):2949-2962. PubMed ID: 36123509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge.
    Jin J; Li Y; Zhang J; Wu S; Cao Y; Liang P; Zhang J; Wong MH; Wang M; Shan S; Christie P
    J Hazard Mater; 2016 Dec; 320():417-426. PubMed ID: 27585274
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immobilization of heavy metals in biochar derived from co-pyrolysis of sewage sludge and calcium sulfate.
    Liu L; Huang L; Huang R; Lin H; Wang D
    J Hazard Mater; 2021 Feb; 403():123648. PubMed ID: 32835990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of migration of heavy metals and performance of product during co-pyrolysis process of municipal sewage sludge and walnut shell.
    Liu Y; Liu Q; Chen M; Ma L; Yang B; Chen J; Lv Z; Liang Q; Yang P
    Environ Sci Pollut Res Int; 2017 Sep; 24(27):22082-22090. PubMed ID: 28791570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous heavy metal immobilization and antibiotics removal during synergetic treatment of sewage sludge and pig manure.
    Li C; Xie S; Wang Y; Pan X; Yu G; Zhang Y
    Environ Sci Pollut Res Int; 2020 Aug; 27(24):30323-30332. PubMed ID: 32458305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stabilization of heavy metals during co-pyrolysis of sewage sludge and excavated waste.
    Chen G; Tian S; Liu B; Hu M; Ma W; Li X
    Waste Manag; 2020 Feb; 103():268-275. PubMed ID: 31911373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microwave-assisted pyrolysis of textile dyeing sludge, and migration and distribution of heavy metals.
    Zhang H; Gao Z; Liu Y; Ran C; Mao X; Kang Q; Ao W; Fu J; Li J; Liu G; Dai J
    J Hazard Mater; 2018 Aug; 355():128-135. PubMed ID: 29783153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microwave-assisted pyrolysis of oily sludge from offshore oilfield for recovery of high-quality products.
    Liu Y; Song Y; Zhang T; Jiang Z; Siyal AA; Dai J; Fu J; Zhou C; Wang L; Li X; Ao W; Jin X; Teng D; Fang J
    J Hazard Mater; 2021 Oct; 420():126578. PubMed ID: 34273884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dewatering and low-temperature pyrolysis of oily sludge in the presence of various agricultural biomasses.
    Zhao S; Zhou X; Wang C; Jia H
    Environ Technol; 2018 Nov; 39(21):2715-2723. PubMed ID: 28791935
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of pyrolysis temperature on characteristics, chemical speciation and environmental risk of Cr, Mn, Cu, and Zn in biochars derived from pig manure.
    Shen X; Zeng J; Zhang D; Wang F; Li Y; Yi W
    Sci Total Environ; 2020 Feb; 704():135283. PubMed ID: 31822406
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Migration characteristics of heavy metals during sludge pyrolysis.
    Zhang Z; Ju R; Zhou H; Chen H
    Waste Manag; 2021 Feb; 120():25-32. PubMed ID: 33279824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Co-microwave pyrolysis of electroplating sludge and municipal sewage sludge to synergistically improve the immobilization of high-concentration heavy metals and an analysis of the mechanism.
    Chen X; Ma R; Luo J; Huang W; Fang L; Sun S; Lin J
    J Hazard Mater; 2021 Sep; 417():126099. PubMed ID: 34229391
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationship between heavy metal consolidation and H
    Lin Q; Zhang J; Yin L; Liu H; Zuo W; Tian Y
    Environ Sci Pollut Res Int; 2021 Jun; 28(22):27694-27702. PubMed ID: 33515143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The hierarchical porous structure bio-char assessments produced by co-pyrolysis of municipal sewage sludge and hazelnut shell and Cu(II) adsorption kinetics.
    Zhao B; Xu X; Zeng F; Li H; Chen X
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19423-19435. PubMed ID: 29728972
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge.
    Wang X; Li C; Li Z; Yu G; Wang Y
    Ecotoxicol Environ Saf; 2019 Jan; 168():45-52. PubMed ID: 30384166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heavy metal stabilization and improved biochar generation via pyrolysis of hydrothermally treated sewage sludge with antibiotic mycelial residue.
    Li C; Xie S; You F; Zhu X; Li J; Xu X; Yu G; Wang Y; Angelidaki I
    Waste Manag; 2021 Jan; 119():152-161. PubMed ID: 33065336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study on the effects of catalysts on the immobilization efficiency and mechanism of heavy metals during the microwave pyrolysis of sludge.
    Sun S; Huang X; Lin J; Ma R; Fang L; Zhang P; Qu J; Zhang X; Liu Y
    Waste Manag; 2018 Jul; 77():131-139. PubMed ID: 30008402
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Co-pyrolysis of sewage sludge and Ca(H
    Gu W; Guo J; Bai J; Dong B; Hu J; Zhuang X; Zhang C; Shih K
    J Environ Manage; 2022 Mar; 305():114292. PubMed ID: 34998065
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: Synergistic effects on biochar properties and the environmental risk of heavy metals.
    Wang X; Chang VW; Li Z; Chen Z; Wang Y
    J Hazard Mater; 2021 Jun; 412():125200. PubMed ID: 33517061
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fate of heavy metals during co-disposal of municipal solid waste incineration fly ash and sewage sludge by hydrothermal coupling pyrolysis process.
    Chen Z; Yu G; Wang Y; Wang X
    Waste Manag; 2020 May; 109():28-37. PubMed ID: 32380379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.