These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35936426)

  • 1. Effect of the Geometrical Structure on the Superhydrophobicity and Self-Cleaning Properties of Plasma-Treated Polyvinylidene Fluoride Fabrics.
    Hong HR; Lee JS; Park CH
    ACS Omega; 2022 Aug; 7(30):26275-26288. PubMed ID: 35936426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a superhydrophobic electrospun poly(vinylidene fluoride) web
    Ju BJ; Oh JH; Yun C; Park CH
    RSC Adv; 2018 Aug; 8(50):28825-28835. PubMed ID: 35548396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Fiber Type and Yarn Diameter on Superhydrophobicity, Self-Cleaning Property, and Water Spray Resistance.
    Oh JH; Park CH
    Polymers (Basel); 2021 Mar; 13(5):. PubMed ID: 33800087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green and sustainable fabrication of a durable superhydrophobic cotton fabric with self-cleaning properties.
    Xu Q; Wang X; Zhang Y
    Int J Biol Macromol; 2023 Jul; 242(Pt 1):124731. PubMed ID: 37148935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Cleaning Polyester Fabric Prepared with TiOF
    Jeong E; Woo H; Moon Y; Lee DY; Jung M; Lee YS; Bae JS
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33530596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superhydrophobicity and conductivity of polyester-conductive fabrics using alkaline hydrolysis.
    Lee S
    RSC Adv; 2022 Aug; 12(35):22911-22921. PubMed ID: 36106007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Energy-Efficient Superhydrophobic Polypropylene Fabric by Oxygen Plasma Etching and Thermal Aging.
    Kim S; Oh JH; Park CH
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33238417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric heated cotton fabrics with durable conductivity and self-cleaning properties.
    Lee S; Park CH
    RSC Adv; 2018 Aug; 8(54):31008-31018. PubMed ID: 35548731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-cleaning, superhydrophobic, and antibacterial cotton fabrics with chitosan-based composite coatings.
    Suryaprabha T; Ha H; Hwang B; Sethuraman MG
    Int J Biol Macromol; 2023 Oct; 250():126217. PubMed ID: 37572817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile fabrication of multifunctional fabrics: use of copper and silver nanoparticles for antibacterial, superhydrophobic, conductive fabrics.
    Hong HR; Kim J; Park CH
    RSC Adv; 2018 Dec; 8(73):41782-41794. PubMed ID: 35558807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable and self-healing superhydrophobic MnO
    Li D; Guo Z
    J Colloid Interface Sci; 2017 Oct; 503():124-130. PubMed ID: 28511101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cotton fabrics with single-faced superhydrophobicity.
    Liu Y; Xin JH; Choi CH
    Langmuir; 2012 Dec; 28(50):17426-34. PubMed ID: 23186211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of a durable superhydrophobic membrane by electrospinning poly (vinylidene fluoride) (PVDF) mixed with epoxy-siloxane modified SiO2 nanoparticles: a possible route to superhydrophobic surfaces with low water sliding angle and high water contact angle.
    Wang S; Li Y; Fei X; Sun M; Zhang C; Li Y; Yang Q; Hong X
    J Colloid Interface Sci; 2011 Jul; 359(2):380-8. PubMed ID: 21536296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust multifunctional superhydrophobic, photocatalytic and conductive fabrics with electro-/photo-thermal self-healing ability.
    Li H; Tang S; Chen W; Yang X; Dong S; Xing T; Zhao Y; Chen G
    J Colloid Interface Sci; 2022 May; 614():1-11. PubMed ID: 35078081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unidirectional water transfer effect from fabrics having a superhydrophobic-to-hydrophilic gradient.
    Wang H; Wang X; Lin T
    J Nanosci Nanotechnol; 2013 Feb; 13(2):839-42. PubMed ID: 23646526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Modification of Cotton Fabric Using TiO
    Tudu BK; Sinhamahapatra A; Kumar A
    ACS Omega; 2020 Apr; 5(14):7850-7860. PubMed ID: 32309694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smart Superhydrophobic Textiles Utilizing a Long-Range Antenna Sensor for Hazardous Aqueous Droplet Detection plus Prevention.
    Kazemi KK; Zarifi T; Mohseni M; Narang R; Golovin K; Zarifi MH
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34877-34888. PubMed ID: 34254781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of Robust Superhydrophobic Polyester Fabrics with Photothermal Conversion and Oil-Water Separation Performance through Deposition of Natural Polyphenols.
    Chen X; Wang J; Xie A; Wang B; Wu J; Chen G; Xing T
    Langmuir; 2023 Nov; 39(44):15817-15827. PubMed ID: 37877472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Honeycomb-like cobalt hydroxide nanosheets induced basalt fiber fabrics with robust and durable superhydrophobicity for anti-icing and oil-water separation.
    Yang S; Chen L; Wang S; Liu S; Xu Q; Zhu J; Zhang Q; Zhao P
    J Hazard Mater; 2022 May; 429():128284. PubMed ID: 35066220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of superhydrophobic cotton fabric with fluorinated TiO
    Yang M; Liu W; Jiang C; He S; Xie Y; Wang Z
    Carbohydr Polym; 2018 Oct; 197():75-82. PubMed ID: 30007660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.