BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35936743)

  • 1. Application of random forest based on semi-automatic parameter adjustment for optimization of anti-breast cancer drugs.
    Liu J; Zhou Z; Kong S; Ma Z
    Front Oncol; 2022; 12():956705. PubMed ID: 35936743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feature selection for global tropospheric ozone prediction based on the BO-XGBoost-RFE algorithm.
    Zhang B; Zhang Y; Jiang X
    Sci Rep; 2022 Jun; 12(1):9244. PubMed ID: 35655087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GSEA-SDBE: A gene selection method for breast cancer classification based on GSEA and analyzing differences in performance metrics.
    Ai H
    PLoS One; 2022; 17(4):e0263171. PubMed ID: 35472078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization Modeling of Anti - breast Cancer Candidate Drugs.
    Zhou S; Li Y; Zhang X
    Biotechnol Genet Eng Rev; 2023 Mar; ():1-19. PubMed ID: 36960749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data.
    Zhang Y; Deng Q; Liang W; Zou X
    Biomed Res Int; 2018; 2018():7538204. PubMed ID: 30228989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Breast Cancer in Chinese Women Using Machine Learning Techniques: Algorithm Development.
    Hou C; Zhong X; He P; Xu B; Diao S; Yi F; Zheng H; Li J
    JMIR Med Inform; 2020 Jun; 8(6):e17364. PubMed ID: 32510459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CS-GA-XGBoost-Based Model for a Radio-Frequency Power Amplifier under Different Temperatures.
    Wang J; Zhou S
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets.
    Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic hyperparameter optimization with Modified Scalable-Neighbourhood Component Analysis for breast cancer prognostication.
    Alsubai S; Alqahtani A; Sha M
    Neural Netw; 2023 May; 162():240-257. PubMed ID: 36913821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization.
    Nishio M; Nishizawa M; Sugiyama O; Kojima R; Yakami M; Kuroda T; Togashi K
    PLoS One; 2018; 13(4):e0195875. PubMed ID: 29672639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning algorithms to predict early pregnancy loss after in vitro fertilization-embryo transfer with fetal heart rate as a strong predictor.
    Liu L; Jiao Y; Li X; Ouyang Y; Shi D
    Comput Methods Programs Biomed; 2020 Nov; 196():105624. PubMed ID: 32623348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significant duration prediction of seismic ground motions using machine learning algorithms.
    Li X; Gao P
    PLoS One; 2024; 19(2):e0299639. PubMed ID: 38416770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A machine learning-based approach to ERα bioactivity and drug ADMET prediction.
    An T; Chen Y; Chen Y; Ma L; Wang J; Zhao J
    Front Genet; 2022; 13():1087273. PubMed ID: 36685926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MSXFGP: combining improved sparrow search algorithm with XGBoost for enhanced genomic prediction.
    Zhou G; Gao J; Zuo D; Li J; Li R
    BMC Bioinformatics; 2023 Oct; 24(1):384. PubMed ID: 37817077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemoinformatics and Machine Learning Approaches for Identifying Antiviral Compounds.
    John L; Soujanya Y; Mahanta HJ; Narahari Sastry G
    Mol Inform; 2022 Apr; 41(4):e2100190. PubMed ID: 34811938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Algorithms Identify Clinical Subtypes and Cancer in Anti-TIF1γ+ Myositis: A Longitudinal Study of 87 Patients.
    Zhao L; Xie S; Zhou B; Shen C; Li L; Pi W; Gong Z; Zhao J; Peng Q; Zhou J; Peng J; Zhou Y; Zou L; Song L; Zhu H; Luo H
    Front Immunol; 2022; 13():802499. PubMed ID: 35237262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Application of machine learning models in predicting early stone-free rate after flexible ureteroscopic lithotripsy for renal stones].
    Zhu XH; Yang MY; Xia HZ; He W; Zhang ZY; Liu YQ; Xiao CL; Ma LL; Lu J
    Beijing Da Xue Xue Bao Yi Xue Ban; 2019 Aug; 51(4):653-659. PubMed ID: 31420617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Optimization Algorithm for Computer-Aided Diagnosis of Breast Cancer Based on Support Vector Machine.
    Dou Y; Meng W
    Front Bioeng Biotechnol; 2021; 9():698390. PubMed ID: 34291042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative artificial intelligence models for Australian coastal sediment lead prediction: An investigation of in-situ measurements and meteorological parameters effects.
    Bhagat SK; Tiyasha T; Kumar A; Malik T; Jawad AH; Khedher KM; Deo RC; Yaseen ZM
    J Environ Manage; 2022 May; 309():114711. PubMed ID: 35182982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural protein fold recognition based on secondary structure and evolutionary information using machine learning algorithms.
    Qin X; Liu M; Zhang L; Liu G
    Comput Biol Chem; 2021 Apr; 91():107456. PubMed ID: 33610129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.