These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35937097)

  • 1. Force Transmission Analysis and Optimization of Bowden Cable on Body in a Flexible Exoskeleton.
    Li X; Liu J; Li W; Huang Y; Zhan G
    Appl Bionics Biomech; 2022; 2022():5552166. PubMed ID: 35937097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the Control Method of Knee Joint Human-Exoskeleton Interactive System.
    Wang Z; Yang C; Ding Z; Yang T; Guo H; Jiang F; Tian B
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning-Based Repetitive Control of a Bowden-Cable-Actuated Exoskeleton with Frictional Hysteresis.
    Shi Y; Guo M; Hui C; Li S; Ji X; Yang Y; Luo X; Xia D
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design on the Bowden Cable-Driven Upper Limb Soft Exoskeleton.
    Wei W; Qu Z; Wang W; Zhang P; Hao F
    Appl Bionics Biomech; 2018; 2018():1925694. PubMed ID: 30116293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic Walking Energy Harvester Design for a Wearable Bowden Cable-Actuated Exoskeleton Robot.
    Shi Y; Guo M; Zhong H; Ji X; Xia D; Luo X; Yang Y
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Low-Cost, Large Curvature Bend Sensor Based on a Bowden-Cable.
    Jeong U; Cho KJ
    Sensors (Basel); 2016 Jun; 16(7):. PubMed ID: 27347959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Model-Based Method for Minimizing Reflected Motor Inertia in Off-board Actuation Systems: Applications in Exoskeleton Design.
    Anderson A; Richburg C; Czerniecki J; Aubin P
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():360-367. PubMed ID: 31374656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Cable-Driven Three-DOF Wrist Rehabilitation Exoskeleton With Improved Performance.
    Shi K; Song A; Li Y; Li H; Chen D; Zhu L
    Front Neurorobot; 2021; 15():664062. PubMed ID: 33897402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards Human-like Walking with Biomechanical and Neuromuscular Control Features: Personalized Attachment Point Optimization Method of Cable-Driven Exoskeleton.
    Chen Y; Yu W; Benali A; Lu D; Kok SY; Wang R
    Front Aging Neurosci; 2024; 16():1327397. PubMed ID: 38371400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Robotic Exoskeleton for Finger Rehabilitation: Kinematics Analysis.
    Dai Y; Ji J; Yang G; Yang Y
    Appl Bionics Biomech; 2022; 2022():1751460. PubMed ID: 36276583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters.
    Chen W; Li Z; Cui X; Zhang J; Bai S
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31618848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force and Torque Characterization in the Actuation of a Walking-Assistance, Cable-Driven Exosuit.
    Rodríguez Jorge D; Bermejo García J; Jayakumar A; Lorente Moreno R; Agujetas Ortiz R; Romero Sánchez F
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and Control of a Cable-Driven Rotary Series Elastic Actuator for an Upper Limb Rehabilitation Robot.
    Zhang Q; Sun D; Qian W; Xiao X; Guo Z
    Front Neurorobot; 2020; 14():13. PubMed ID: 32161531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical and Physiological Evaluation of a Multi-Joint Exoskeleton with Active-Passive Assistance for Walking.
    Cao W; Zhang Z; Chen C; He Y; Wang D; Wu X
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Single Leg Knee Exoskeleton and Sensing Knee Center of Rotation Change for Intention Detection.
    Moon DH; Kim D; Hong YD
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a wearable cable-driven upper limb exoskeleton based on epicyclic gear trains structure.
    Xiao F; Gao Y; Wang Y; Zhu Y; Zhao J
    Technol Health Care; 2017 Jul; 25(S1):3-11. PubMed ID: 28582886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Friction and Wear Mechanism Analysis of Polymer Flexible Cable Using a High Natural Frequency Piezoelectric Sensor.
    Ni J; Ren X; Zheng J
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Estimation of Glenohumeral Joint Rotation Center With Cable-Driven Arm Exoskeleton (CAREX)-A Cable-Based Arm Exoskeleton.
    Mao Y; Jin X; Agrawal SK
    J Mech Robot; 2014 Feb; 6(1):0145021-145025. PubMed ID: 24895530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Walking Economy With an Ankle Exoskeleton Prior to Human-in-the-Loop Optimization.
    Wang W; Chen J; Ding J; Zhang J; Liu J
    Front Neurorobot; 2021; 15():797147. PubMed ID: 35082609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indirect Force Control of a Cable-Driven Parallel Robot: Tension Estimation using Artificial Neural Network trained by Force Sensor Measurements.
    Piao J; Kim ES; Choi H; Moon CB; Choi E; Park JO; Kim CS
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31159461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.