BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35937354)

  • 1. Classification of high-throughput phenotyping data for differentiation among nutrient deficiency in common bean.
    Lazarević B; Carović-Stanko K; Živčak M; Vodnik D; Javornik T; Safner T
    Front Plant Sci; 2022; 13():931877. PubMed ID: 35937354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring Drought Stress in Common Bean Using Chlorophyll Fluorescence and Multispectral Imaging.
    Javornik T; Carović-Stanko K; Gunjača J; Vidak M; Lazarević B
    Plants (Basel); 2023 Mar; 12(6):. PubMed ID: 36987074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Phenotyping Methods in Detection of Drought and Salinity Stress in Basil (
    Lazarević B; Šatović Z; Nimac A; Vidak M; Gunjača J; Politeo O; Carović-Stanko K
    Front Plant Sci; 2021; 12():629441. PubMed ID: 33679843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses.
    Tschiersch H; Junker A; Meyer RC; Altmann T
    Plant Methods; 2017; 13():54. PubMed ID: 28690669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of High-Temperature-Induced Morphological and Physiological Changes in Potato Using Nondestructive Plant Phenotyping.
    Lazarević B; Carović-Stanko K; Safner T; Poljak M
    Plants (Basel); 2022 Dec; 11(24):. PubMed ID: 36559644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Throughput
    Pandey P; Ge Y; Stoerger V; Schnable JC
    Front Plant Sci; 2017; 8():1348. PubMed ID: 28824683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spatio temporal spectral framework for plant stress phenotyping.
    Khanna R; Schmid L; Walter A; Nieto J; Siegwart R; Liebisch F
    Plant Methods; 2019; 15():13. PubMed ID: 30774703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement Method Based on Multispectral Three-Dimensional Imaging for the Chlorophyll Contents of Greenhouse Tomato Plants.
    Sun G; Wang X; Sun Y; Ding Y; Lu W
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31366151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image-Based High-Throughput Phenotyping in Horticultural Crops.
    Abebe AM; Kim Y; Kim J; Kim SL; Baek J
    Plants (Basel); 2023 May; 12(10):. PubMed ID: 37653978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants.
    Kalaji HM; Bąba W; Gediga K; Goltsev V; Samborska IA; Cetner MD; Dimitrova S; Piszcz U; Bielecki K; Karmowska K; Dankov K; Kompała-Bąba A
    Photosynth Res; 2018 Jun; 136(3):329-343. PubMed ID: 29185137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mineral nutrient homeostasis, photosynthetic performance, and modulations of antioxidative defense components in two contrasting genotypes of Arachis hypogaea L. (peanut) for mitigation of nitrogen and/or phosphorus starvation.
    Patel M; Rangani J; Kumari A; Parida AK
    J Biotechnol; 2020 Nov; 323():136-158. PubMed ID: 32827603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Mapping of Water-Stress Responsive Genomic Loci in Lettuce (
    Kumar P; Eriksen RL; Simko I; Mou B
    Front Genet; 2021; 12():634554. PubMed ID: 33679897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nondestructive Determination of Nitrogen, Phosphorus and Potassium Contents in Greenhouse Tomato Plants Based on Multispectral Three-Dimensional Imaging.
    Sun G; Ding Y; Wang X; Lu W; Sun Y; Yu H
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31805657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion.
    Zhang H; Ge Y; Xie X; Atefi A; Wijewardane NK; Thapa S
    Plant Methods; 2022 May; 18(1):60. PubMed ID: 35505350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-scale high-throughput phenotyping of apple architectural and functional traits in orchard reveals genotypic variability under contrasted watering regimes.
    Coupel-Ledru A; Pallas B; Delalande M; Boudon F; Carrié E; Martinez S; Regnard JL; Costes E
    Hortic Res; 2019; 6():52. PubMed ID: 31044079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Method of High Throughput Monitoring Crop Physiology Using Chlorophyll Fluorescence and Multispectral Imaging.
    Wang H; Qian X; Zhang L; Xu S; Li H; Xia X; Dai L; Xu L; Yu J; Liu X
    Front Plant Sci; 2018; 9():407. PubMed ID: 29643864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of imaging techniques for plant phenotyping.
    Li L; Zhang Q; Huang D
    Sensors (Basel); 2014 Oct; 14(11):20078-111. PubMed ID: 25347588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AutoRoot: open-source software employing a novel image analysis approach to support fully-automated plant phenotyping.
    Pound MP; Fozard S; Torres Torres M; Forde BG; French AP
    Plant Methods; 2017; 13():12. PubMed ID: 28286542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of computer vision and multispectral imaging techniques for classification of cowpea (
    ElMasry G; Mandour N; Wagner MH; Demilly D; Verdier J; Belin E; Rousseau D
    Plant Methods; 2019; 15():24. PubMed ID: 30911323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Target-to-Sensor Mode Multispectral Imaging Device for High-Throughput and High-Precision Touch-Based Leaf-Scale Soybean Phenotyping.
    Li X; Chen Z; Wei X; Zhao T; Jin J
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.