BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35937354)

  • 21. Plant phenotyping: from bean weighing to image analysis.
    Walter A; Liebisch F; Hund A
    Plant Methods; 2015; 11():14. PubMed ID: 25767559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding the Biostimulant Action of Vegetal-Derived Protein Hydrolysates by High-Throughput Plant Phenotyping and Metabolomics: A Case Study on Tomato.
    Paul K; Sorrentino M; Lucini L; Rouphael Y; Cardarelli M; Bonini P; Reynaud H; Canaguier R; Trtílek M; Panzarová K; Colla G
    Front Plant Sci; 2019; 10():47. PubMed ID: 30800134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of blue-green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in winter wheat.
    Bürling K; Hunsche M; Noga G
    J Plant Physiol; 2011 Sep; 168(14):1641-8. PubMed ID: 21658789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in spectral reflectance of wheat leaves in response to specific macronutrient deficiency.
    Ayala-Silva T; Beyl CA
    Adv Space Res; 2005; 35(2):305-17. PubMed ID: 15934211
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-Throughput Corn Image Segmentation and Trait Extraction Using Chlorophyll Fluorescence Images.
    Souza A; Yang Y
    Plant Phenomics; 2021; 2021():9792582. PubMed ID: 34382005
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phenoplant: a web resource for the exploration of large chlorophyll fluorescence image datasets.
    Rousseau C; Hunault G; Gaillard S; Bourbeillon J; Montiel G; Simier P; Campion C; Jacques MA; Belin E; Boureau T
    Plant Methods; 2015; 11():24. PubMed ID: 25866549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved Accuracy of High-Throughput Phenotyping From Unmanned Aerial Systems by Extracting Traits Directly From Orthorectified Images.
    Wang X; Silva P; Bello NM; Singh D; Evers B; Mondal S; Espinosa FP; Singh RP; Poland J
    Front Plant Sci; 2020; 11():587093. PubMed ID: 33193537
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-invasive approaches for phenotyping of enhanced performance traits in bean.
    Rascher U; Blossfeld S; Fiorani F; Jahnke S; Jansen M; Kuhn AJ; Matsubara S; M Rtin LLA; Merchant A; Metzner R; M Ller-Linow M; Nagel KA; Pieruschka R; Pinto F; Schreiber CM; Temperton VM; Thorpe MR; Dusschoten DV; Van Volkenburgh E; Windt CW; Schurr U
    Funct Plant Biol; 2011 Dec; 38(12):968-983. PubMed ID: 32480955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Applications of high-throughput plant phenotyping to study nutrient use efficiency.
    Berger B; de Regt B; Tester M
    Methods Mol Biol; 2013; 953():277-90. PubMed ID: 23073890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Novel Image-Based Screening Method to Study Water-Deficit Response and Recovery of Barley Populations Using Canopy Dynamics Phenotyping and Simple Metabolite Profiling.
    Marchetti CF; Ugena L; Humplík JF; Polák M; Ćavar Zeljković S; Podlešáková K; Fürst T; De Diego N; Spíchal L
    Front Plant Sci; 2019; 10():1252. PubMed ID: 31681365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sustainability Trait Modeling of Field-Grown Switchgrass (
    Xu Y; Shrestha V; Piasecki C; Wolfe B; Hamilton L; Millwood RJ; Mazarei M; Stewart CN
    Plants (Basel); 2021 Dec; 10(12):. PubMed ID: 34961199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GrowScreen-PaGe, a non-invasive, high-throughput phenotyping system based on germination paper to quantify crop phenotypic diversity and plasticity of root traits under varying nutrient supply.
    Gioia T; Galinski A; Lenz H; Müller C; Lentz J; Heinz K; Briese C; Putz A; Fiorani F; Watt M; Schurr U; Nagel KA
    Funct Plant Biol; 2016 Feb; 44(1):76-93. PubMed ID: 32480548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chlorophyll Fluorescence Imaging for Environmental Stress Diagnosis in Crops.
    Park B; Wi S; Chung H; Lee H
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38474977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis.
    Rousseau C; Belin E; Bove E; Rousseau D; Fabre F; Berruyer R; Guillaumès J; Manceau C; Jacques MA; Boureau T
    Plant Methods; 2013 Jun; 9(1):17. PubMed ID: 23758798
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrated Analysis Platform: An Open-Source Information System for High-Throughput Plant Phenotyping.
    Klukas C; Chen D; Pape JM
    Plant Physiol; 2014 Jun; 165(2):506-518. PubMed ID: 24760818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine Learning for High-Throughput Stress Phenotyping in Plants.
    Singh A; Ganapathysubramanian B; Singh AK; Sarkar S
    Trends Plant Sci; 2016 Feb; 21(2):110-124. PubMed ID: 26651918
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High throughput phenotyping of morpho-anatomical stem properties using X-ray computed tomography in sorghum.
    Gomez FE; Carvalho G; Shi F; Muliana AH; Rooney WL
    Plant Methods; 2018; 14():59. PubMed ID: 30008795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generating 3D Multispectral Point Clouds of Plants with Fusion of Snapshot Spectral and RGB-D Images.
    Xie P; Du R; Ma Z; Cen H
    Plant Phenomics; 2023; 5():0040. PubMed ID: 37022332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A two-step registration-classification approach to automated segmentation of multimodal images for high-throughput greenhouse plant phenotyping.
    Henke M; Junker A; Neumann K; Altmann T; Gladilin E
    Plant Methods; 2020; 16():95. PubMed ID: 32670387
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrating Optical Imaging Tools for Rapid and Non-invasive Characterization of Seed Quality: Tomato (
    Galletti PA; Carvalho MEA; Hirai WY; Brancaglioni VA; Arthur V; Barboza da Silva C
    Front Plant Sci; 2020; 11():577851. PubMed ID: 33408727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.