BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35937354)

  • 41. Picturing pathogen infection in plants.
    Barón M; Pineda M; Pérez-Bueno ML
    Z Naturforsch C J Biosci; 2016 Sep; 71(9-10):355-368. PubMed ID: 27626766
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A mechanism of expansion: Arctic deciduous shrubs capitalize on warming-induced nutrient availability.
    Prager CM; Boelman NT; Eitel JUH; Gersony JT; Greaves HE; Heskel MA; Magney TS; Menge DNL; Naeem S; Shen C; Vierling LA; Griffin KL
    Oecologia; 2020 Mar; 192(3):671-685. PubMed ID: 32052180
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Potassium Starvation Limits Soybean Growth More than the Photosynthetic Processes across CO
    Singh SK; Reddy VR
    Front Plant Sci; 2017; 8():991. PubMed ID: 28642785
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nutritional deficiency in scarlet eggplant limits its growth by modifying the absorption and use efficiency of macronutrients.
    Teixeira GCM; Prado RM; Oliveira KS; Buchelt AC; Rocha AMS; Santos MS
    PLoS One; 2021; 16(6):e0252866. PubMed ID: 34086839
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Foliar Symptomology, Nutrient Content, Yield, and Secondary Metabolite Variability of Cannabis Grown Hydroponically with Different Single-Element Nutrient Deficiencies.
    Llewellyn D; Golem S; Jones AMP; Zheng Y
    Plants (Basel); 2023 Jan; 12(3):. PubMed ID: 36771506
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genetic dissection of seasonal vegetation index dynamics in maize through aerial based high-throughput phenotyping.
    Wang J; Li X; Guo T; Dzievit MJ; Yu X; Liu P; Price KP; Yu J
    Plant Genome; 2021 Nov; 14(3):e20155. PubMed ID: 34596348
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of feature point detectors for multimodal image registration in plant phenotyping.
    Henke M; Junker A; Neumann K; Altmann T; Gladilin E
    PLoS One; 2019; 14(9):e0221203. PubMed ID: 31568494
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses - a review.
    Humplík JF; Lazár D; Husičková A; Spíchal L
    Plant Methods; 2015; 11():29. PubMed ID: 25904970
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Excess iron-induced changes in the photosynthetic characteristics of sweet potato.
    Adamski JM; Peters JA; Danieloski R; Bacarin MA
    J Plant Physiol; 2011 Nov; 168(17):2056-62. PubMed ID: 21752489
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stress Distribution Analysis on Hyperspectral Corn Leaf Images for Improved Phenotyping Quality.
    Ma D; Wang L; Zhang L; Song Z; U Rehman T; Jin J
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32629882
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An Open-Source Package for Thermal and Multispectral Image Analysis for Plants in Glasshouse.
    Sharma N; Banerjee BP; Hayden M; Kant S
    Plants (Basel); 2023 Jan; 12(2):. PubMed ID: 36679030
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hyperspectral Technique Combined With Deep Learning Algorithm for Prediction of Phenotyping Traits in Lettuce.
    Yu S; Fan J; Lu X; Wen W; Shao S; Guo X; Zhao C
    Front Plant Sci; 2022; 13():927832. PubMed ID: 35845657
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Straightforward High-Throughput Aboveground Phenotyping Platform for Small- to Medium-Sized Plants.
    Caldwell D; Iyer-Pascuzzi AS
    Methods Mol Biol; 2022; 2539():37-48. PubMed ID: 35895194
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improving tissue classification in MRI: a three-dimensional multispectral discriminant analysis method with automated training class selection.
    Harris G; Andreasen NC; Cizadlo T; Bailey JM; Bockholt HJ; Magnotta VA; Arndt S
    J Comput Assist Tomogr; 1999; 23(1):144-54. PubMed ID: 10050826
    [TBL] [Abstract][Full Text] [Related]  

  • 55. QTL mapping for seedling traits in wheat grown under varying concentrations of N, P and K nutrients.
    Guo Y; Kong FM; Xu YF; Zhao Y; Liang X; Wang YY; An DG; Li SS
    Theor Appl Genet; 2012 Mar; 124(5):851-65. PubMed ID: 22089330
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Physiological responses of hydroponically-grown Japanese mint under nutrient deficiency.
    Janpen C; Kanthawang N; Inkham C; Tsan FY; Sommano SR
    PeerJ; 2019; 7():e7751. PubMed ID: 31579618
    [TBL] [Abstract][Full Text] [Related]  

  • 57. NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress.
    Nath M; Tuteja N
    Protoplasma; 2016 May; 253(3):767-786. PubMed ID: 26085375
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Telemetric, Gravimetric Platform for Real-Time Physiological Phenotyping of Plant-Environment Interactions.
    Dalal A; Shenhar I; Bourstein R; Mayo A; Grunwald Y; Averbuch N; Attia Z; Wallach R; Moshelion M
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32831303
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimal temporal-spatial fluorescence techniques for phenotyping nitrogen status in oilseed rape.
    Sun D; Xu H; Weng H; Zhou W; Liang Y; Dong X; He Y; Cen H
    J Exp Bot; 2020 Oct; 71(20):6429-6443. PubMed ID: 32777073
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The memory of iron stress in strawberry plants.
    Gama F; Saavedra T; da Silva JP; Miguel MG; de Varennes A; Correia PJ; Pestana M
    Plant Physiol Biochem; 2016 Jul; 104():36-44. PubMed ID: 27010743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.