These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 35937500)
1. Diverse geroprotectors differently affect a mechanism linking cellular aging to cellular quiescence in budding yeast. Leonov A; Feldman R; Piano A; Arlia-Ciommo A; Junio JAB; Orfanos E; Tafakori T; Lutchman V; Mohammad K; Elsaser S; Orfali S; Rajen H; Titorenko VI Oncotarget; 2022; 13():918-943. PubMed ID: 35937500 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms that Link Chronological Aging to Cellular Quiescence in Budding Yeast. Mohammad K; Baratang Junio JA; Tafakori T; Orfanos E; Titorenko VI Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32630624 [TBL] [Abstract][Full Text] [Related]
3. Caloric restriction extends yeast chronological lifespan via a mechanism linking cellular aging to cell cycle regulation, maintenance of a quiescent state, entry into a non-quiescent state and survival in the non-quiescent state. Leonov A; Feldman R; Piano A; Arlia-Ciommo A; Lutchman V; Ahmadi M; Elsaser S; Fakim H; Heshmati-Moghaddam M; Hussain A; Orfali S; Rajen H; Roofigari-Esfahani N; Rosanelli L; Titorenko VI Oncotarget; 2017 Sep; 8(41):69328-69350. PubMed ID: 29050207 [TBL] [Abstract][Full Text] [Related]
4. Caloric restriction causes a distinct reorganization of the lipidome in quiescent and non-quiescent cells of budding yeast. Mohammad K; Orfanos E; Titorenko VI Oncotarget; 2021 Nov; 12(24):2351-2374. PubMed ID: 34853658 [TBL] [Abstract][Full Text] [Related]
5. The budding yeast transition to quiescence. Miles S; Bradley GT; Breeden LL Yeast; 2021 Jan; 38(1):30-38. PubMed ID: 33350501 [TBL] [Abstract][Full Text] [Related]
6. Cellular quiescence in budding yeast. Sun S; Gresham D Yeast; 2021 Jan; 38(1):12-29. PubMed ID: 33350503 [TBL] [Abstract][Full Text] [Related]
7. Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence. Weinberger M; Mesquita A; Caroll T; Marks L; Yang H; Zhang Z; Ludovico P; Burhans WC Aging (Albany NY); 2010 Oct; 2(10):709-26. PubMed ID: 21076178 [TBL] [Abstract][Full Text] [Related]
8. Caloric restriction creates a metabolic pattern of chronological aging delay that in budding yeast differs from the metabolic design established by two other geroprotectors. Mohammad K; Titorenko VI Oncotarget; 2021 Mar; 12(7):608-625. PubMed ID: 33868583 [TBL] [Abstract][Full Text] [Related]
9. Msa1 and Msa2 Modulate G1-Specific Transcription to Promote G1 Arrest and the Transition to Quiescence in Budding Yeast. Miles S; Croxford MW; Abeysinghe AP; Breeden LL PLoS Genet; 2016 Jun; 12(6):e1006088. PubMed ID: 27272642 [TBL] [Abstract][Full Text] [Related]
10. Lithocholic acid extends longevity of chronologically aging yeast only if added at certain critical periods of their lifespan. Burstein MT; Kyryakov P; Beach A; Richard VR; Koupaki O; Gomez-Perez A; Leonov A; Levy S; Noohi F; Titorenko VI Cell Cycle; 2012 Sep; 11(18):3443-62. PubMed ID: 22894934 [TBL] [Abstract][Full Text] [Related]
11. Stratification of yeast cells during chronological aging by size points to the role of trehalose in cell vitality. Svenkrtova A; Belicova L; Volejnikova A; Sigler K; Jazwinski SM; Pichova A Biogerontology; 2016 Apr; 17(2):395-408. PubMed ID: 26614086 [TBL] [Abstract][Full Text] [Related]
12. Xbp1 directs global repression of budding yeast transcription during the transition to quiescence and is important for the longevity and reversibility of the quiescent state. Miles S; Li L; Davison J; Breeden LL PLoS Genet; 2013 Oct; 9(10):e1003854. PubMed ID: 24204289 [TBL] [Abstract][Full Text] [Related]
13. Trehalose is a key determinant of the quiescent metabolic state that fuels cell cycle progression upon return to growth. Shi L; Sutter BM; Ye X; Tu BP Mol Biol Cell; 2010 Jun; 21(12):1982-90. PubMed ID: 20427572 [TBL] [Abstract][Full Text] [Related]
14. A common strategy for initiating the transition from proliferation to quiescence. Miles S; Breeden L Curr Genet; 2017 May; 63(2):179-186. PubMed ID: 27544284 [TBL] [Abstract][Full Text] [Related]
15. DNA damage and DNA replication stress in yeast models of aging. Burhans WC; Weinberger M Subcell Biochem; 2012; 57():187-206. PubMed ID: 22094423 [TBL] [Abstract][Full Text] [Related]
16. Discovery of fifteen new geroprotective plant extracts and identification of cellular processes they affect to prolong the chronological lifespan of budding yeast. Dakik P; Rodriguez MEL; Junio JAB; Mitrofanova D; Medkour Y; Tafakori T; Taifour T; Lutchman V; Samson E; Arlia-Ciommo A; Rukundo B; Simard É; Titorenko VI Oncotarget; 2020 Jun; 11(23):2182-2203. PubMed ID: 32577164 [TBL] [Abstract][Full Text] [Related]
17. Yeast quiescence exit swiftness is influenced by cell volume and chronological age. Laporte D; Jimenez L; Gouleme L; Sagot I Microb Cell; 2017 Dec; 5(2):104-111. PubMed ID: 29417058 [TBL] [Abstract][Full Text] [Related]
18. Potential Geroprotectors - From Bench to Clinic. Moskalev AA Biochemistry (Mosc); 2023 Nov; 88(11):1732-1738. PubMed ID: 38105194 [TBL] [Abstract][Full Text] [Related]