BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 35937692)

  • 1. Magnolol as a potent antifungal agent inhibits
    Xie Y; Hua H; Zhou P
    Front Cell Infect Microbiol; 2022; 12():935322. PubMed ID: 35937692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lrg1 Regulates β (1,3)-Glucan Masking in Candida albicans through the Cek1 MAP Kinase Pathway.
    Chen T; Wagner AS; Tams RN; Eyer JE; Kauffman SJ; Gann ER; Fernandez EJ; Reynolds TB
    mBio; 2019 Sep; 10(5):. PubMed ID: 31530671
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans.
    Sun L; Liao K; Wang D
    PLoS One; 2015; 10(2):e0117695. PubMed ID: 25710475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secreted aspartic protease cleavage of Candida albicans Msb2 activates Cek1 MAPK signaling affecting biofilm formation and oropharyngeal candidiasis.
    Puri S; Kumar R; Chadha S; Tati S; Conti HR; Hube B; Cullen PJ; Edgerton M
    PLoS One; 2012; 7(11):e46020. PubMed ID: 23139737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Cek1‑mediated MAP kinase pathway regulates exposure of α‑1,2 and β‑1,2‑mannosides in the cell wall of Candida albicans modulating immune recognition.
    Román E; Correia I; Salazin A; Fradin C; Jouault T; Poulain D; Liu FT; Pla J
    Virulence; 2016 Jul; 7(5):558-77. PubMed ID: 27191378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposure of Candida albicans β (1,3)-glucan is promoted by activation of the Cek1 pathway.
    Chen T; Jackson JW; Tams RN; Davis SE; Sparer TE; Reynolds TB
    PLoS Genet; 2019 Jan; 15(1):e1007892. PubMed ID: 30703081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Candida albicans beta-glucan exposure is controlled by the fungal CEK1-mediated mitogen-activated protein kinase pathway that modulates immune responses triggered through dectin-1.
    Galán-Díez M; Arana DM; Serrano-Gómez D; Kremer L; Casasnovas JM; Ortega M; Cuesta-Domínguez A; Corbí AL; Pla J; Fernández-Ruiz E
    Infect Immun; 2010 Apr; 78(4):1426-36. PubMed ID: 20100861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis.
    Csank C; Schröppel K; Leberer E; Harcus D; Mohamed O; Meloche S; Thomas DY; Whiteway M
    Infect Immun; 1998 Jun; 66(6):2713-21. PubMed ID: 9596738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Candida albicans responds to glycostructure damage by Ace2-mediated feedback regulation of Cek1 signaling.
    van Wijlick L; Swidergall M; Brandt P; Ernst JF
    Mol Microbiol; 2016 Dec; 102(5):827-849. PubMed ID: 27589033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candida albicans Cek1 mitogen-activated protein kinase signaling enhances fungicidal activity of salivary histatin 5.
    Li R; Puri S; Tati S; Cullen PJ; Edgerton M
    Antimicrob Agents Chemother; 2015; 59(6):3460-8. PubMed ID: 25824232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Mkk2 MAPKK Regulates Cell Wall Biogenesis in Cooperation with the Cek1-Pathway in Candida albicans.
    Román E; Alonso-Monge R; Miranda A; Pla J
    PLoS One; 2015; 10(7):e0133476. PubMed ID: 26197240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interface of Candida albicans biofilm matrix-associated drug resistance and cell wall integrity regulation.
    Nett JE; Sanchez H; Cain MT; Ross KM; Andes DR
    Eukaryot Cell; 2011 Dec; 10(12):1660-9. PubMed ID: 21666076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Streptococcus mutans sigX-inducing peptide inhibits the virulence of Candida albicans and oral candidiasis through the Ras1-cAMP-Efg1 pathway.
    Zhang K; Sun IG; Liao B; Yang Y; Ma H; Jiang A; Chen S; Guo Q; Ren B
    Int J Antimicrob Agents; 2023 Aug; 62(2):106855. PubMed ID: 37211262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro inhibitory activities of magnolol against
    Zhou P; Fu J; Hua H; Liu X
    Drug Des Devel Ther; 2017; 11():2653-2661. PubMed ID: 28919715
    [No Abstract]   [Full Text] [Related]  

  • 15. Minocycline Inhibits Candida albicans Budded-to-Hyphal-Form Transition and Biofilm Formation.
    Kurakado S; Takatori K; Sugita T
    Jpn J Infect Dis; 2017 Sep; 70(5):490-494. PubMed ID: 28367877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic activity of magnolol with azoles and its possible antifungal mechanism against Candida albicans.
    Sun LM; Liao K; Liang S; Yu PH; Wang DY
    J Appl Microbiol; 2015 Apr; 118(4):826-38. PubMed ID: 25641229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of 7-benzyloxyindole and other halogenated indoles to inhibit Candida albicans biofilm and hyphal formation.
    Manoharan RK; Lee JH; Lee J
    Microb Biotechnol; 2018 Nov; 11(6):1060-1069. PubMed ID: 29656577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cpp1 phosphatase mediated signaling crosstalk between Hog1 and Cek1 mitogen-activated protein kinases is involved in the phenotypic transition in Candida albicans.
    Deng FS; Lin CH
    Med Mycol; 2018 Feb; 56(2):242-252. PubMed ID: 28431022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cek1 regulates ß(1,3)-glucan exposure through calcineurin effectors in Candida albicans.
    Wagner AS; Lumsdaine SW; Mangrum MM; King AE; Hancock TJ; Sparer TE; Reynolds TB
    PLoS Genet; 2022 Sep; 18(9):e1010405. PubMed ID: 36121853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-Hydroxy coumarin demonstrates anti-biofilm and anti-hyphal efficacy against Candida albicans via inhibition of cell-adhesion, morphogenesis, and virulent genes regulation.
    Sushmitha TJ; Rajeev M; Kathirkaman V; Shivam S; Rao TS; Pandian SK
    Sci Rep; 2023 Jul; 13(1):11687. PubMed ID: 37468600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.