BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 35938189)

  • 1. Tibial bone forces can be monitored using shoe-worn wearable sensors during running.
    Elstub LJ; Nurse CA; Grohowski LM; Volgyesi P; Wolf DN; Zelik KE
    J Sports Sci; 2022 Aug; 40(15):1741-1749. PubMed ID: 35938189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running.
    Matijevich ES; Scott LR; Volgyesi P; Derry KH; Zelik KE
    Hum Mov Sci; 2020 Dec; 74():102690. PubMed ID: 33132194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wearables for Running Gait Analysis: A Systematic Review.
    Mason R; Pearson LT; Barry G; Young F; Lennon O; Godfrey A; Stuart S
    Sports Med; 2023 Jan; 53(1):241-268. PubMed ID: 36242762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Promising Wearable Solution for the Practical and Accurate Monitoring of Low Back Loading in Manual Material Handling.
    Matijevich ES; Volgyesi P; Zelik KE
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33419101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ground reaction force metrics are not strongly correlated with tibial bone load when running across speeds and slopes: Implications for science, sport and wearable tech.
    Matijevich ES; Branscombe LM; Scott LR; Zelik KE
    PLoS One; 2019; 14(1):e0210000. PubMed ID: 30653510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate Impact Loading Rate Estimation During Running via a Subject-Independent Convolutional Neural Network Model and Optimal IMU Placement.
    Tan T; Strout ZA; Shull PB
    IEEE J Biomed Health Inform; 2021 Apr; 25(4):1215-1222. PubMed ID: 32763858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Footwear, Running Speed, and Location on the Validity of Two Commercially Available Inertial Measurement Units During Running.
    Napier C; Willy RW; Hannigan BC; McCann R; Menon C
    Front Sports Act Living; 2021; 3():643385. PubMed ID: 33981991
    [No Abstract]   [Full Text] [Related]  

  • 8. Does the Position of Foot-Mounted IMU Sensors Influence the Accuracy of Spatio-Temporal Parameters in Endurance Running?
    Zrenner M; Küderle A; Roth N; Jensen U; Dümler B; Eskofier BM
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33036477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of attachment methods of skin mounted inertial measurement units on tibial accelerations.
    Johnson CD; Outerleys J; Tenforde AS; Davis IS
    J Biomech; 2020 Dec; 113():110118. PubMed ID: 33197691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shoe-Insole Technology for Injury Prevention in Walking.
    Nagano H; Begg RK
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29738486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digital wearable insole-based identification of knee arthropathies and gait signatures using machine learning.
    Wipperman MF; Lin AZ; Gayvert KM; Lahner B; Somersan-Karakaya S; Wu X; Im J; Lee M; Koyani B; Setliff I; Thakur M; Duan D; Breazna A; Wang F; Lim WK; Halasz G; Urbanek J; Patel Y; Atwal GS; Hamilton JD; Stuart S; Levy O; Avbersek A; Alaj R; Hamon SC; Harari O
    Elife; 2024 Apr; 13():. PubMed ID: 38686919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cushioned insoles on impact forces during running.
    O'Leary K; Vorpahl KA; Heiderscheit B
    J Am Podiatr Med Assoc; 2008; 98(1):36-41. PubMed ID: 18202332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of gait events and kinetic waveforms with wearable sensors and machine learning when running in an unconstrained environment.
    Donahue SR; Hahn ME
    Sci Rep; 2023 Feb; 13(1):2339. PubMed ID: 36759681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peak and Per-Step Tibial Bone Stress During Walking and Running in Female and Male Recreational Runners.
    Meardon SA; Derrick TR; Willson JD; Baggaley M; Steinbaker CR; Marshall M; Willy RW
    Am J Sports Med; 2021 Jul; 49(8):2227-2237. PubMed ID: 34077287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of biomechanical shoe orthoses in tibial stress fracture prevention.
    Ekenman I; Milgrom C; Finestone A; Begin M; Olin C; Arndt T; Burr D
    Am J Sports Med; 2002; 30(6):866-70. PubMed ID: 12435654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of the Accelerometer Operating Range on Biomechanical Parameters: Stride Length, Velocity, and Peak Tibial Acceleration during Running.
    Mitschke C; Kiesewetter P; Milani TL
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29303986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peak tibial acceleration should not be used as indicator of tibial bone loading during running.
    Zandbergen MA; Ter Wengel XJ; van Middelaar RP; Buurke JH; Veltink PH; Reenalda J
    Sports Biomech; 2023 Jan; ():1-18. PubMed ID: 36645012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strike index estimation using a convolutional neural network with a single, shoe-mounted inertial sensor.
    Tan T; Strout ZA; Cheung RTH; Shull PB
    J Biomech; 2022 Jun; 139():111145. PubMed ID: 35594817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relevance of Frequency-Domain Analyses to Relate Shoe Cushioning, Ground Impact Forces and Running Injury Risk: A Secondary Analysis of a Randomized Trial With 800+ Recreational Runners.
    Malisoux L; Gette P; Backes A; Delattre N; Cabri J; Theisen D
    Front Sports Act Living; 2021; 3():744658. PubMed ID: 34859204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Musculoskeletal Loading at Common Running Injury Locations using Machine Learning and Instrumented Insoles.
    Van Hooren B; van Rengs L; Meijer K
    Med Sci Sports Exerc; 2024 Jun; ():. PubMed ID: 38857523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.