These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35938445)

  • 1. Charge-transfer plasmons of complex nanoparticle arrays connected by conductive molecular bridges.
    Fedorov AS; Visotin MA; Eremkin EV; Krasnov PO; Ågren H; Polyutov SP
    Phys Chem Chem Phys; 2022 Aug; 24(32):19531-19540. PubMed ID: 35938445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge transfer plasmons in the arrays of nanoparticles connected by conductive linkers.
    Fedorov AS; Visotin MA; Gerasimov VS; Polyutov SP; Avramov PA
    J Chem Phys; 2021 Feb; 154(8):084123. PubMed ID: 33639747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-transfer plasmons with narrow conductive molecular bridges: A quantum-classical theory.
    Fedorov AS; Krasnov PO; Visotin MA; Tomilin FN; Polyutov SP; Ågren H
    J Chem Phys; 2019 Dec; 151(24):244125. PubMed ID: 31893913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances.
    Wen F; Zhang Y; Gottheim S; King NS; Zhang Y; Nordlander P; Halas NJ
    ACS Nano; 2015 Jun; 9(6):6428-35. PubMed ID: 25986388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Interface Damping of Surface Plasmon Resonances.
    Lee SA; Link S
    Acc Chem Res; 2021 Apr; 54(8):1950-1960. PubMed ID: 33788547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directional Damping of Plasmons at Metal-Semiconductor Interfaces.
    Liu G; Lou Y; Zhao Y; Burda C
    Acc Chem Res; 2022 Jul; 55(13):1845-1856. PubMed ID: 35696292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fowler-Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles.
    Wu L; Duan H; Bai P; Bosman M; Yang JK; Li E
    ACS Nano; 2013 Jan; 7(1):707-16. PubMed ID: 23215253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters.
    Wang Y; Li Z; Zhao K; Sobhani A; Zhu X; Fang Z; Halas NJ
    Nanoscale; 2013 Oct; 5(20):9897-901. PubMed ID: 23979142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon hybridization model generalized to conductively bridged nanoparticle dimers.
    Liu L; Wang Y; Fang Z; Zhao K
    J Chem Phys; 2013 Aug; 139(6):064310. PubMed ID: 23947858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low absorption losses of strongly coupled surface plasmons in nanoparticle assemblies.
    Chang WS; Willingham BA; Slaughter LS; Khanal BP; Vigderman L; Zubarev ER; Link S
    Proc Natl Acad Sci U S A; 2011 Dec; 108(50):19879-84. PubMed ID: 22084069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct optical excitation of dark plasmons for hot electron generation.
    Mueller NS; Vieira BGM; Höing D; Schulz F; Barros EB; Lange H; Reich S
    Faraday Discuss; 2019 May; 214(0):159-173. PubMed ID: 30912539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Dimensional Plasmons in Laterally Confined 2D Electron Systems.
    Zagorodnev IV; Zabolotnykh AA; Rodionov DA; Volkov VA
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmons in Finite Spherical Electrolyte Systems: RPA Effective Jellium Model for Ionic Plasma Excitations.
    Jacak WA
    Plasmonics; 2016; 11():637-651. PubMed ID: 27069439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the decay mechanisms of surface plasmon coupling features with a light emitter through time-resolved simulations.
    Chuang WH; Wang JY; Yang CC; Kiang YW
    Opt Express; 2009 Jan; 17(1):104-16. PubMed ID: 19129878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of the Interband Transitions in Gold and Silver on the Dynamics of Propagating and Localized Surface Plasmons.
    Kolwas K; Derkachova A
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32707713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncovering the Evolution of Low-Energy Plasmons in Nanopatterned Aluminum Plasmonics on Graphene.
    Elibol K; van Aken PA
    Nano Lett; 2022 Jul; 22(14):5825-5831. PubMed ID: 35820031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon Character Index: An Accurate and Efficient Metric for Identifying and Quantifying Plasmons in Molecules.
    Langford J; Xu X; Yang Y
    J Phys Chem Lett; 2021 Sep; 12(38):9391-9397. PubMed ID: 34551254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms.
    Zorić I; Zäch M; Kasemo B; Langhammer C
    ACS Nano; 2011 Apr; 5(4):2535-46. PubMed ID: 21438568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromagnetic Field Redistribution in Metal Nanoparticle on Graphene.
    Li K; Liu A; Wei D; Yu K; Sun X; Yan S; Huang Y
    Nanoscale Res Lett; 2018 Apr; 13(1):124. PubMed ID: 29696469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers.
    Romero I; Aizpurua J; Bryant GW; García De Abajo FJ
    Opt Express; 2006 Oct; 14(21):9988-99. PubMed ID: 19529393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.