These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35938445)

  • 21. Polarization-Dependent Lasing Behavior from Low-Symmetry Nanocavity Arrays.
    Knudson MP; Li R; Wang D; Wang W; Schaller RD; Odom TW
    ACS Nano; 2019 Jul; 13(7):7435-7441. PubMed ID: 30938987
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A generalized non-local optical response theory for plasmonic nanostructures.
    Mortensen NA; Raza S; Wubs M; Søndergaard T; Bozhevolnyi SI
    Nat Commun; 2014 May; 5():3809. PubMed ID: 24787630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dark plasmon modes for efficient hot electron generation in multilayers of gold nanoparticles.
    Hoeing D; Schulz F; Mueller NS; Reich S; Lange H
    J Chem Phys; 2020 Feb; 152(6):064710. PubMed ID: 32061229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic modifications of polarizability for large metallic spheroidal nanoshells.
    Chung HY; Leung PT; Tsai DP
    J Chem Phys; 2009 Sep; 131(12):124122. PubMed ID: 19791867
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coupled harmonic oscillator models for correlated plasmons in one-dimensional and quasi-one-dimensional systems.
    Khandelwal A; Mohammad Tashrif S; Rusydi A
    J Phys Condens Matter; 2021 Nov; 34(6):. PubMed ID: 34340220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmon mediated enhancement and tuning of optical emission properties of two dimensional graphitic carbon nitride nanosheets.
    Bayan S; Gogurla N; Midya A; Singha A; Ray SK
    Nanotechnology; 2017 Dec; 28(48):485204. PubMed ID: 29048328
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Full analytical model for obtaining surface plasmon resonance modes of metal nanoparticle structures embedded in layered media.
    Simsek E
    Opt Express; 2010 Jan; 18(2):1722-33. PubMed ID: 20174000
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gradual plasmon evolution and huge infrared near-field enhancement of metallic bridged nanoparticle dimers.
    Huang Y; Ma L; Hou M; Xie Z; Zhang Z
    Phys Chem Chem Phys; 2016 Jan; 18(4):2319-23. PubMed ID: 26752002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The absorption tunability and enhanced electromagnetic coupling of terahertz-plasmons in grating-gate AlN/GaN plasmonic device.
    Wang L; Chen X; Hu W; Yu A; Wang S; Lu W
    Opt Express; 2013 May; 21(9):10821-30. PubMed ID: 23669939
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intrinsic Plasmon-Phonon Interactions in Highly Doped Graphene: A Near-Field Imaging Study.
    Bezares FJ; Sanctis A; Saavedra JRM; Woessner A; Alonso-González P; Amenabar I; Chen J; Bointon TH; Dai S; Fogler MM; Basov DN; Hillenbrand R; Craciun MF; García de Abajo FJ; Russo S; Koppens FHL
    Nano Lett; 2017 Oct; 17(10):5908-5913. PubMed ID: 28809573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Real-space mapping of the strongly coupled plasmons of nanoparticle dimers.
    Kim DS; Heo J; Ahn SH; Han SW; Yun WS; Kim ZH
    Nano Lett; 2009 Oct; 9(10):3619-25. PubMed ID: 19624147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient generation of propagating plasmons by electron beams.
    Cai W; Sainidou R; Xu J; Polman A; García de Abajo FJ
    Nano Lett; 2009 Mar; 9(3):1176-81. PubMed ID: 19227997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the energy shift between near-field and far-field peak intensities in localized plasmon systems.
    Zuloaga J; Nordlander P
    Nano Lett; 2011 Mar; 11(3):1280-3. PubMed ID: 21319841
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anisotropy Effects on the Plasmonic Response of Nanoparticle Dimers.
    Varas A; García-González P; García-Vidal FJ; Rubio A
    J Phys Chem Lett; 2015 May; 6(10):1891-8. PubMed ID: 26263265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular nanopolaritonics: cross manipulation of near-field plasmons and molecules. I. Theory and application to junction control.
    Neuhauser D; Lopata K
    J Chem Phys; 2007 Oct; 127(15):154715. PubMed ID: 17949199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface plasmons in quantum-sized noble-metal clusters: TDDFT quantum calculations and the classical picture of charge oscillations.
    Weissker HC; López-Lozano X
    Phys Chem Chem Phys; 2015 Nov; 17(42):28379-86. PubMed ID: 26104995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH; You MH; Kim GH; Nam JM
    Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-Loss Tunable Infrared Plasmons in the High-Mobility Perovskite (Ba,La)SnO
    Yang H; Konečná A; Xu X; Cheong SW; Garfunkel E; García de Abajo FJ; Batson PE
    Small; 2022 Apr; 18(16):e2106897. PubMed ID: 35279954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.