These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35938511)

  • 1. How can we use the endocytosis pathways to design nanoparticle drug-delivery vehicles to target cancer cells over healthy cells?
    Cong VT; Houng JL; Kavallaris M; Chen X; Tilley RD; Gooding JJ
    Chem Soc Rev; 2022 Aug; 51(17):7531-7559. PubMed ID: 35938511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How to exploit different endocytosis pathways to allow selective delivery of anticancer drugs to cancer cells over healthy cells.
    Cong VT; Tilley RD; Sharbeen G; Phillips PA; Gaus K; Gooding JJ
    Chem Sci; 2021 Dec; 12(46):15407-15417. PubMed ID: 34976362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery.
    Chavanpatil MD; Khdair A; Panyam J
    J Nanosci Nanotechnol; 2006; 6(9-10):2651-63. PubMed ID: 17048473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folate and Pegylated Aliphatic Polyester Nanoparticles for Targeted Anticancer Drug Delivery.
    Tsolou A; Angelou E; Didaskalou S; Bikiaris D; Avgoustakis K; Agianian B; Koffa MD
    Int J Nanomedicine; 2020; 15():4899-4918. PubMed ID: 32764924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles.
    Morachis JM; Mahmoud EA; Almutairi A
    Pharmacol Rev; 2012 Jul; 64(3):505-19. PubMed ID: 22544864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into cellular uptake of nanoparticles.
    Kafshgari MH; Harding FJ; Voelcker NH
    Curr Drug Deliv; 2015; 12(1):63-77. PubMed ID: 25146441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances.
    Xu S; Olenyuk BZ; Okamoto CT; Hamm-Alvarez SF
    Adv Drug Deliv Rev; 2013 Jan; 65(1):121-38. PubMed ID: 23026636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-Chitosan Particles in Anticancer Drug Delivery: An Up-to-Date Review.
    Kamath PR; Sunil D
    Mini Rev Med Chem; 2017; 17(15):1457-1487. PubMed ID: 28245780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear drug delivery for cancer chemotherapy.
    Sui M; Liu W; Shen Y
    J Control Release; 2011 Oct; 155(2):227-36. PubMed ID: 21846484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle-based drug delivery in cancer: the role of cell membrane structures.
    Yalçın S; Özlüer Ö; Gündüz U
    Ther Deliv; 2016 Nov; 7(11):773-781. PubMed ID: 27790949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cucurbituril-based nanoparticles: a new efficient vehicle for targeted intracellular delivery of hydrophobic drugs.
    Park KM; Suh K; Jung H; Lee DW; Ahn Y; Kim J; Baek K; Kim K
    Chem Commun (Camb); 2009 Jan; (1):71-3. PubMed ID: 19082002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harnessing cells to deliver nanoparticle drugs to treat cancer.
    Singh B; Mitragotri S
    Biotechnol Adv; 2020; 42():107339. PubMed ID: 30639928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caged protein nanoparticles for drug delivery.
    Molino NM; Wang SW
    Curr Opin Biotechnol; 2014 Aug; 28():75-82. PubMed ID: 24832078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing aptamer anchored nanovesicles for enhanced tumor penetration and cellular uptake of water soluble chemotherapeutics.
    Li X; Zhu X; Qiu L
    Acta Biomater; 2016 Apr; 35():269-79. PubMed ID: 26873366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug-polyester conjugated nanoparticles for cancer drug delivery.
    Tong R; Tang L; Yin Q; Cheng J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8337-9. PubMed ID: 22256280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Nanoparticle Mechanical Properties in Cancer Drug Delivery.
    Hui Y; Yi X; Hou F; Wibowo D; Zhang F; Zhao D; Gao H; Zhao CX
    ACS Nano; 2019 Jul; 13(7):7410-7424. PubMed ID: 31287659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors.
    Dallavalle S; Dobričić V; Lazzarato L; Gazzano E; Machuqueiro M; Pajeva I; Tsakovska I; Zidar N; Fruttero R
    Drug Resist Updat; 2020 May; 50():100682. PubMed ID: 32087558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles.
    Salatin S; Yari Khosroushahi A
    J Cell Mol Med; 2017 Sep; 21(9):1668-1686. PubMed ID: 28244656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of nanocarriers with remote magnetic drug release control and enhanced drug delivery for intracellular targeting of cancer cells.
    Tung WL; Hu SH; Liu DM
    Acta Biomater; 2011 Jul; 7(7):2873-82. PubMed ID: 21439410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.