These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35938572)

  • 1. Mathematical modeling and simulation of electromagnetohydrodynamic bio-nanomaterial flow through physiological vessels.
    Ramesh K; Tripathi D; Bhatti MM; Ghachem K; Khan SU; Kolsi L
    J Appl Biomater Funct Mater; 2022; 20():22808000221114708. PubMed ID: 35938572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of electroosmosis regulated peristaltic transport of Bingham nanofluid.
    Tanveer A; Khan M; Salahuddin T; Malik MY
    Comput Methods Programs Biomed; 2019 Oct; 180():105005. PubMed ID: 31421600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixed convection peristaltic motion of copper-water nanomaterial with velocity slip effects in a curved channel.
    Hayat T; Farooq S; Alsaedi A
    Comput Methods Programs Biomed; 2017 Apr; 142():117-128. PubMed ID: 28325440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joule heating and zeta potential effects on peristaltic blood flow through porous micro vessels altered by electrohydrodynamic.
    Ranjit NK; Shit GC; Tripathi D
    Microvasc Res; 2018 May; 117():74-89. PubMed ID: 29291432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat transfer analysis for EMHD peristalsis of ionic-nanofluids via curved channel with Joule dissipation and Hall effects.
    Saba ; Abbasi FM; Shehzad SA
    J Biol Phys; 2021 Dec; 47(4):455-476. PubMed ID: 34570299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electro-osmotic peristaltic flow and heat transfer in an ionic viscoelastic fluid through a curved micro-channel with viscous dissipation.
    Khan AA; Akram K; Zaman A; Anwar Bég O; Bég TA
    Proc Inst Mech Eng H; 2022 Aug; 236(8):1080-1092. PubMed ID: 35735142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiative Peristaltic Flow of Jeffrey Nanofluid with Slip Conditions and Joule Heating.
    Hayat T; Shafique M; Tanveer A; Alsaedi A
    PLoS One; 2016; 11(2):e0148002. PubMed ID: 26886919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and computational analysis of hybrid class nanomaterials subject to entropy generation.
    Khan MI; Alsaedi A; Hayat T; Khan NB
    Comput Methods Programs Biomed; 2019 Oct; 179():104973. PubMed ID: 31443855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal transport of biological base fluid with copper and iron oxide nanoparticles in wavy channel.
    Guedri K; Abbasi A; Al-Khaled K; Farooq W; Khan SU; Khan MI; Galal AM
    J Appl Biomater Funct Mater; 2022; 20():22808000221125870. PubMed ID: 36373397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical analysis of non-Newtonian blood flow in a microchannel.
    Tanveer A; Salahuddin T; Khan M; Malik MY; Alqarni MS
    Comput Methods Programs Biomed; 2020 Jul; 191():105280. PubMed ID: 32066045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Joule heating and entropy generation on multi-slip condition of peristaltic flow of Casson nanofluid in an asymmetric channel.
    Kotnurkar A; Kallolikar N
    J Biol Phys; 2022 Sep; 48(3):273-293. PubMed ID: 35478056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of heat transfer in blood flow altered by electroosmosis through tapered micro-vessels.
    Prakash J; Ramesh K; Tripathi D; Kumar R
    Microvasc Res; 2018 Jul; 118():162-172. PubMed ID: 29596861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of physical aspects of cubic autocatalytic chemically reactive flow of second grade nanomaterial with entropy optimization.
    Alsaadi FE; Hayat T; Khan SA; Alsaadi FE; Khan MI
    Comput Methods Programs Biomed; 2020 Jan; 183():105061. PubMed ID: 31539717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical study for bioconvection peristaltic flow of Sisko nanofluid with Joule heating and thermal radiation.
    Nisar Z; Ahmed B; Ghazwani HA; Muhammad K; Hussien M; Aziz A
    Heliyon; 2023 Dec; 9(12):e22505. PubMed ID: 38213593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle aggregation and electro-osmotic propulsion in peristaltic transport of third-grade nanofluids through porous tube.
    Dolui S; Bhaumik B; De S; Changdar S
    Comput Biol Med; 2024 Jun; 176():108617. PubMed ID: 38772055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat transport and entropy optimization in flow of magneto-Williamson nanomaterial with Arrhenius activation energy.
    Alsaadi FE; Hayat T; Khan MI; Alsaadi FE
    Comput Methods Programs Biomed; 2020 Jan; 183():105051. PubMed ID: 31526945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrothermal blood streaming conveying hybridized nanoparticles in a non-uniform endoscopic conduit.
    Das S; Karmakar P; Ali A
    Med Biol Eng Comput; 2022 Nov; 60(11):3125-3151. PubMed ID: 36103033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magneto rotating flow of hybrid nanofluid with entropy generation.
    Ijaz Khan M; Hafeez MU; Hayat T; Imran Khan M; Alsaedi A
    Comput Methods Programs Biomed; 2020 Jan; 183():105093. PubMed ID: 31586480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixed Convective Peristaltic Flow of Water Based Nanofluids with Joule Heating and Convective Boundary Conditions.
    Hayat T; Nawaz S; Alsaedi A; Rafiq M
    PLoS One; 2016; 11(4):e0153537. PubMed ID: 27104596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influences of slip and Cu-blood nanofluid in a physiological study of cilia.
    Sadaf H; Nadeem S
    Comput Methods Programs Biomed; 2016 Jul; 131():169-80. PubMed ID: 27265057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.